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ABSTRACT We present a general and 
mathematically rigorous algorithm which al- 
lows the helicoidal structure of a protein to  be 
calculated starting from the atomic coordinates 
of its peptide backbone. This algorithm yields a 
unique curved axis which quantifies the folding 
of the backbone and  a full set of helicoidal pa- 
rameters describing the location of each pep- 
tide unit. The parameters obtained form a com- 
plete and independent set and can therefore be 
used for analyzing, comparing, or reconstruct- 
ing protein backbone geometry. This algorithm 
has been implemented in a computer program 
named P-Curve. Several examples of its possi- 
ble applications are discussed. 
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INTRODUCTION 

The increasing number of well-resolved protein 
structures available today poses the problem of how 
the conformations of these often very complex mac- 
romolecules can best be described. The simplest and 
most common solution to this problem is based on 
the calculation of the backbone and side chain tor- 
sion angles. In the case of the backbone, a Rama- 
chandran plot' of +I$ torsions can subsequently in- 
dicate roughly the zones involved in recognizable 
secondary structure motifs such as a-helices or p- 
sheets. However, this approach cannot easily de- 
scribe the folding of the protein backbone and is not 
very useful for finer studies such as the comparison 
of homologous structures, the description of turns, 
or the exact delimitation of secondary structures 
and detection of their internal distortions. 

A number of partial solutions to  these different 
problems have been but no completely 
satisfactory description of protein backbone struc- 
ture has yet been put forward. One attempt at an 
overall description has been made by Rackovsky and 
Scheraga7-' using differential geometry t o  obtain a 
continuous space curve based on the positions of suc- 
cessive C-a backbone atoms. This description, how- 
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ever, cannot be considered an ideal representation of 
folding since it remains curved and twisted even 
within secondary structure zones and thus renders 
the identification of real backbone kinks or turns 
difficult. Moreover, the resolution of the method for 
detecting secondary structures is limited by the fact 
that a minimum of four a carbons is necessary to 
obtain the parameters describing the form of the 
space curve. 

The only way to overcome these difficulties ap- 
pears t o  be the description of the protein backbone in 
terms of a rigorous definition of a generalized helical 
axis. This solution has the advantage of leading to  a 
very simple and clear description of folding, since 
the backbones of all secondary structure zones will 
be reduced to more or less straight lines and true 
kinks or turns will be clearly visualized. Moreover, 
this approach, which must be based on the spacial 
location of successive peptides in the protein back- 
bone, will enable a complete parameter set to  be 
obtained for each monomeric unit. 

Two attempts to obtain at least approximate he- 
lical axes for proteins or protein fragments have al- 
ready been made.l0-l2 These approaches are both 
based on the least-squares fitting of short probe he- 
lices to  successive groups of backbone atoms within 
the proteins studied. In the work of Barlow and 
Thornton" an approximate overall helical axis is 
then defined by linking together successive loca- 
tions on the probe axes. The disadvantage of this 
work is first, its approximate nature, the results ob- 
tained depending on both the length and the confor- 
mation of the probe helix employed. In addition, 
while regular secondary structure zones can be 
treated with this technique, extension of the analy- 
sis to irregular coil regions or sharp turns is much 
less obvious. 

This situation clearly hinders a deeper under- 
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Fig. 1. Division of the polypeptide backbone for helical analysis. The mth unit is 
indicated by the dotted lines and comprises the peptide plane defined by C;, and Nm+, 
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Fig. 2. Definition of the peptide fixed axis system j K i .  €is the 
mid-point of the peptide bond and the plane shown corresponds to 
the mean plane of the peptide group. 

Fig. 4. Construction of the mean plane used for calculating 
interpeptide parameters. 

- 
Pi 

Fig. 3. Definition of the helicoidal parameters (X displace- 
ment, Y displacement, inclination. and tip) which re!a!e_the peptide 
axis system JKL to the local helical axis system VWU 

standing of protein folding and limits the amount of 
data which can easily be extracted from data banks 
of protein structure. We would like to propose a pos- 
sible solution to this problem by describing a gen- 
eral algorithm which can be used to obtain a com- 
plete and unique helicoidal description of any 
protein backbone. The algorithm we will describe is 
an adaption of the approach we have recently devel- 
oped for describing nucleic acid s t r ~ c t u r e . ' ~ , ~ ~  It 
leads to a unique curved helicoidal axis and a full set 
of helicoidal parameters which locate each peptide 
unit with respect to this axis and with respect to its 
neighbors. 

Our method is a natural extension of the defini- 
tions used in helical descriptions of regular poly- 
mers to the case of irregular systems. The basis of 
this approach is the definition of a function which 
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describes departure from perfect helical symmetry 
in terms of the curvature of the axis describing the 
polymer and in terms of changes in the position of 
successive monomers with respect to this axis. Min- 
imization of this geometric function yields the gen- 
erally curved axis of the polymer and provides a 
unique helical description where both types of irreg- 
ularity have been "smoothed" in an  optimal least- 
squares sense. Since the function is constructed so as 
to take into account simultaneously the position of 
all the monomeric units making up the polymer, the 
final description of any one of these units thus de- 
pends on the position of its neighbors. This leads to 
a much more coherent view of the overall conforma- 
tion than that obtained with any purely local pa- 
rameters such as the backbone torsion angles. 

Once the analysis has been performed for a given 
protein, a great deal of information on its conforma- 
tion can be obtained. It now becomes possible to rig- 
orously define the location of secondary structures 

Fio. 6.  Ribbon diaorams of svmmetric oolvoeotide structures. and to detect any deformations or anomalies that  
In each case the helGal axis Oi the strudtur;?' is' shown with an they may contain. One example of this type of ap- 
arrowhead indicating the C-terminal end (for references to data 
used in construction see Table 11). plication is described for the case of a small protein. 

Using the overall protein axis, it is also possible to 
rapidly compare related protein structures either 
graphically or numerically as part of a data base 
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Fig. 7. Phi/psi plots of the helicoidal parameters of symmetric polypeptide structures. 
Values are in angstroms for translational parameters and in degrees for rotational param- 
eters. Dotted lines indicate discontinuities. 
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Fig. 8. Stereodiagrams of the helical axis alone (above) and of the backbone ribbon and 
the helical axis (below) resulting from the analysis of crarnbin (coordinates from ref. 19). 

search program. Moreover, since this axis is a well- 
defined and concise alternative to  the C-a backbone 
curve for describing the path of the polymer chain, 
the apparatus of differential geometry can be used to 
describe its shape in the same way as proposed by 
Rackovsky and S ~ h e r a g a . ~  We will not make such 
an analysis presently, but will consider this possi- 
bility in our forthcoming studies. 

MATERIALS AND METHODS 
The first step in defining the helicoidal structure of 

a polymer is to choose the structural repeating ele- 
ment to  be used. For a protein the most natural choice 
seems to be the successive peptide groups. For the 
purposes of our analysis we will consequently divide 
the protein chain as shown in Figure 1. We must 

subsequently associate a fixed axis system with each 
repeating element, which will serve to define its po- 
sition in space. This axis system is shown in Figure 
2 .  It is centered on the middle of the peptide bond @I 
and defined by three mutually perpendicular unit 
vectors (J ,KL) .  The first of these vectors, J ,  is simply 
the peptide bond vector in the direction N-C’. L lies 
in the mean plane of the peptide group and points 
toward the side carrying the carbonyl group. K is 
perpendicular to the mean peptide plane, and is de- 
fined by the vector product L x 3. 

Next, it is necessary to define the position of each 
repeating element with respect to a local helical axis 
system. This requires four variables, two transla- 
tions and two rotations. These variables are shown in 
Figure 3. The helical axis system is centered at  point 
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Fig. g.-Stereodiagrarns of the helical axis alone (above) and of the backbone ribbon and 
the helical axis (below) resulting from the analysis of BPTl (coordinates from ref. 20). 

P and defined by the vectors U (the helical axis), V, 
and W. The two translations which link the helical 
axis system to the peptide fixed axes are then made 
along the axes V and W and termed, respectively, X 
displacement and Y displacement. The rotational po- 
sition of the peptide system is obtained by a right- 
handed rotation termed “inclination” (angle a in Fig. 
3) around a vector parallel to  V passing through the 
point E and by a right-handed rotation termed “tip” 
(angle P in Figure 3) around the resulting position of 
the peptide fixed axis K. It is remarked that the 
direction of the translations and the signs of the ro- 
tations used here have been chosen to be consistent 
with the those used in our algorithm for determining 
the structures of nucleic a c i d ~ l ~ , ’ ~  and the conven- 
tions recently proposed for this problem during the 
EMBO Workshop a t  Cambridge in 1988.15 

In order to  describe a regular helicoidal conforma- 
tion (such as an a-helix or a P-sheet) it is necessary 
to add only one further translation and rotation to 
the four variables described above. These additional 
variables correspond to the separation of successive 
repeating elements along the helical axis U (termed 
“rise”) and their relative right-handed rotation 
around this axis (termed “twist”). 

We now consider how to  define a function that will 
enable us to obtain the optimal description of the 
helical structure of irregular conformations such as 
those found in native proteins. The system we have 
defined above consists of an axis system JKL and a 
reference point E attached to each peptide plane and 
a local helical axis system VWU with a reference 
point P again for each peptide. These two axis sys- 
tems are related by the helicoidal variables X dis- 

_ _ _  
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TABLE I. Global Parameter Definitions 

Name Class Code Symbol Definition 
X displacement A XDP dx V',T(EL -P;) 
Y displacement A YDP dY W m ? , - P J  
Inclination A INC rl kcOs-1 (KiTWL) 

Tip A TIP 0 2 cos-1 (J,TVJ 

Rise C RIS Dz bi-l-Pz-ll + /P,-P,I 
Tilt C TLT 7 V ( i )  +.Yl-rl(i-l) 
Roll C ROL P O ( i )  +0,-B(i- l )  

Axis X displacement D AXD A x  Z(Pz-P;-J 
Axis Y displacement D AYD AY fT(PL-Pj- 1) 
Axis inclination D AIN YA 42cos-'(fTt) 
Axis tip D ATP HA 2 2cos-l(T=TU,) 

Shift C SHF D x  dx( i )+Ax-dx( i - l )  
Slide C SLD DY dy(i)  + Ay-dy( i- 1) 

C TWT 0 +cos-l - (Wj - T- f + )kcos-l(WL-lTf-) Twist 

TABLE 11. Helicoidal Parameters for Standard Secondary Structure Motifs* 

Name: + JI X displacement Y displacement Inclination Tip Rise Twist 
a(r) -57.0 -47.0 0.1 1.5 -6.1 -20.6 1.5 100.2 
ail) 57.0 47.0 0.1 
310 -71.0 -18.0 0.3 
7T -57.1 -69.7 0.0 
4314 88.1 91.7 0.1 
w 64.4 55.4 0.1 
P(P) -119.0 113.0 0.1 
P b P )  -139.0 135.0 0.1 
27 -75.0 70.0 0.1 
2.Z7 -78.1 59.2 0.2 

-1.5 6.1 -20.6 1.5 -100.2 
1.1 -20.1 -13.3 1.8 111.9 
2.1 2.0 -26.6 1.1 81.8 

-2.6 -2.1 118.3 1.2 70.3 
-1.8 6.3 -28.5 1.0 -92.7 

0.0 -31.3 45.4 3.3 178.0 
0.0 -23.2 55.4 3.5 178.9 
0 .o -33.4 16.2 2.8 179.0 
0.1 -33.0 13.6 2.7 167.6 

*In Tables 11-V, translational parameters are in angstroms and rotational parameters are in degrees. 
t r ,  right handed; 1, left handed; p, parallel; ap, antiparallel. $J/$ values for oi and p structures from ref. 17, for the 310 helix from ref. 
6, and for 7, 4314, to, 27, and 2.27 from ref. 18. 

placement, Y displacement, inclination, and tip. In 
practice, we know the atomic coordinates of the pro- 
tein so the JKL axes are fixed in space and the so- 
lution to our problem consists of finding the optimal 
positions and orientations of the local helical axis 
systems, VWU.  

This aim is achieved by formulating a function 
which, first, quantifies the irregularity in the heli- 
coidal parameters between successive peptide 
planes and, second, quantifies the disruption be- 
tween successive local helical axes (this disruption 
taking the form of a change of direction of the U 
vectors or a lateral shift between successive P 
points). The first aim is easily satisfied by summing 
terms (over the N peptides in the protein backbone) 
which represent the change in position of successive 
peptides with respect to their local helical axis sys- 
tems. These terms involve calculating the differ- 
ences (as sums of squares to avoid the influence of 
signs) between projections of the local helical axes 0 
and the vectors P-E onto the local axis systems of 
successive peptides. These projections are defined 
respectively by, 

(note UiTXi is the scalar product between the vectors 
U i  and X i ) .  We thus arrive a t  the first two terms of 
our function. 

To deal with deformations between successive local 
helical axes we require one term to compare their 
vectorial directions which can be formulated as 
shown below. 

If we now define the mean unit vector between suc- 
cessive helical axes as 

(U,) = (0, + ui-l) I ~ 0, + Oipl ~ 

and the vector between successive P points as 
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Fig. 10. Stereodiagrams of the helical axis alone (above) and of the backbone ribbon 
and the helical axis (below) resulting from the analysis of myoglobin (coordinates from ref. 
21). 

s, = Pi - P,&l 

then we can calculate the lateral dislocation be- 
tween these points, perpendicular to  the mean axis 
as 

from which the last term of our function is obtained 
as 

In order to  obtain a balanced weighting between the 
rotational terms of the function (A1,Bl) and the 

translational terms (A2,B2) it is necessary t o  mul- 
tiply the rotation angles contained within the 
former terms by the average distance separating 
successive units in the polymer. This implies that 
A1 and B1 should be multiplied by the square of this 
distance. We use a value of 6 for this weighting, 
corresponding to an average separation of roughly 
2.5 A. 

The full expression for the function to be mini- 
mized is then 

F ( h )  = 6 (A1 +B1) + A2 + B2 

The variables of the function, denoted by the letter 
h, are simply the four helicoidal variables (X dis- 
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TABLE 111. +/+ Torsions and Peptide-Axis (Class A) Helicoidal Parameters for the 
First 25 Residues of CrambinI4* 

T 1  
T 2  
c 3  
c 4  
P 5  
S 6  
I 7  
V 8  
A 9  
R 10 
s 11 
N 12 
F 13 
N 14 
V 15 
C 16 
R 17 
L 18 
P 19 
G 20 
T 21 
P 22 
E 23 
A24 
I 25 

- 107.8 
-131.2 
- 118.9 
- 76.2 
- 157.9 

-63.6 
-55.9 
-61.4 
-63.2 
-61.2 
-64.9 
-59.1 
-62.8 
-69.2 
-56.6 
-77.1 
-53.2 
-77.2 
106.3 
-52.7 
-57.0 
-56.4 
-63.4 
-74.8 

Residue + + X displacement Y displacement Inclination Tip 
147.7 -0.13 0.04 -27.95 49.81 
144.3 
133.2 
151.2 
19.0 

166.0 
-42.1 
-44.6 
-43.8 
-43.3 
-42.4 
-39.5 
-47.2 
-35.2 
-41.2 
-36.0 
-16.1 
-46.2 

-7.6 
7.3 

136.3 
146.6 
-36.2 
-34.9 

-0.06 
-0.15 
-0.14 

0.00 
-0.16 
-0.26 
-0.13 
-0.01 

0.05 
0.13 
0.13 
0.12 
0.19 
0.17 
0.35 
0.48 
0.53 
0.25 

-0.34 
-0.33 
-0.38 
-0.24 
-0.06 

0.03 
0.00 

-0.05 
0.21 
0.58 
1.09 
1.42 
1.57 
1.56 
1.52 
1.52 
1.49 
1.49 
1.44 
1.36 
1.18 
0.82 
0.03 

-0.23 
-0.39 

0.21 
1.04 
1.44 

-27.41 
-27.04 
-28.68 
-2.75 

-15.16 
1.75 

-0.90 
-5.23 
-7.80 
-8.83 
-9.39 
-9.41 

-12.44 
- 12.13 
-16.61 
-20.38 
-15.20 

1.02 
- 18.25 
-31.95 
-27.62 
-4.58 
-6.91 

55.62 
54.49 
46.41 
40.69 
28.18 
-3.67 

-17.98 
-20.76 
-22.36 
-21.01 
-21.11 
-20.20 
-20.94 
-20.37 
- 12.42 
-12.19 

4.33 
13.74 
9.95 

29.89 
17.13 
-3.71 

-16.47 
-37.9 -0.02 1.60 -8.94 -23.23 

*Divisions (indicated by space) in Tables 111-V indicate secondary structure zones (see text). 

TABLE IV. Interpeptide (class C) Helicoidal Parameters for the First 25 Residues of 
Crambinlg 

Junction Shift Slide Rise Tilt Roll Twist 
T l iT 2 0.10 0.05 3.32 -3.29 7.17 - 146.60 
T 2/C 3 -0.14 -0.24 3.41 5.50 -2.63 - 176.25 
c 3lC 4 
c 41P 5 
P 51s 6 
S 6/I 7 
I 7lV 8 
V 8lA 9 
A 9IR10 
RlOlS 11 
SllIN12 
Nl2lF 13 
F 13lN 14 
N14IV15 
V15IC 16 
C16/R 17 
R17IL 18 
L18IP 19 
P19/G20 
G20lT 21 
T2llP 22 
P22iE23 

0.13 0.25 
0.31 0.77 
0.22 0.23 

-0.29 0.32 
-0.09 0.28 
-0.01 0.22 
-0.02 0.07 

0.14 -0.01 
0.02 0.01 

-0.05 -0.05 
0.14 -0.02 

-0.17 -0.07 
0.27 -0.08 
0.01 -0.32 

-0.29 -0.18 
-0.54 -0.61 
- 1.40 0.31 
-0.22 -0.20 
-0.70 0.88 
-0.22 0.90 

3.40 
2.99 
4.01 
2.09 
1.58 
1.39 
1.45 
1.48 
1.50 
1.47 
1.61 
1.36 
1.63 
1.92 
1.98 
2.29 
3.13 
3.14 
2.92 
2.13 

7.15 
76.04 

-70.20 
51.85 
11.82 
-0.75 
-2.73 
-0.80 
-1.69 
-0.78 
-4.81 

6.02 
-2.95 
-8.11 
20.26 
32.99 

-31.57 
13.32 
19.19 
43.59 

- 12.43 
- 16.83 
- 16.80 
- 15.49 
-17.80 
-6.30 
-5.70 

-2.04 
1.37 

2.63 
1.46 
0.55 

11.61 

29.28 
-6.70 

-20.57 
-61.51 

34.55 
12.60 

1.71 

-154.26 
68.88 

178.37 
83.47 

100.84 
99.06 
97.80 

101.15 
99.97 
98.48 

103.26 
96.59 

108.84 
105.70 
99.02 

107.55 
-66.88 
-96.93 
- 111.48 

93.56 
E23lA24 -0.04 0.42 1.70 9.69 -11.11 99.98 
A2411 25 -0.17 0.28 1.31 5.48 - 14.08 93.64 

placement, Y displacement, inclination, tip) of each 
peptide in the strand. It should be noted that each 
term of F(h)  has been chosen so that an identical 
sum will be obtained whether the protein backbone 

is analyzed in the sense N-terminal to C-terminal or 
vice versa. In order to achieve a rapid convergence of 
the function F(h)  we also calculate the analytic first 
derivatives of F with respect to the helicoidal vari- 
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TABLE V. Interaxis (Class D) Helicoidal Parameters for the First 25 Residues of 
CrambinIg 
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Junction Ax AY Ainc Atip Adis Bend 
T llT 2 0.03 0.06 -3.84 1.35 0.07 4.07 
T 21C 3 
c 3lC 4 
c 41P 5 
P 51s 6 
S 611 7 
I 71V 8 
V 81A 9 
A 9lR10 
RlOlS 11 
Sll/N12 
Nl2iF 13 
F13lN14 
N14lV15 
V15IC 16 
C16lR17 
R17IL 18 
L18/P 19 
P19lG20 
G20lT21 
T21lP 22 
P22lE 23 
E23lA24 
A2411 25 

-0.04 -0.21 
0.12 0.29 
0.17 0.50 
0.38 -0.14 

-0.20 -0.18 
-0.21 -0.05 
-0.14 0.07 
-0.07 0.08 

0.06 0.03 
0.01 0.01 

-0.03 -0.02 
0.07 -0.02 

-0.14 -0.02 
0.09 0.00 

-0.12 -0.14 
-0.33 0.19 
-0.26 0.18 
-0.80 0.57 
-0.23 -0.04 
-0.65 0.28 
-0.37 0.07 
-0.21 0.01 
-0.22 0.12 

ables of each peptide. The development of these de- 
rivatives has been fully described in our previous 
p~bl icat ion '~ and is not repeated here. 

Finally, we must consider the definition of the in- 
terpeptide parameters in the general case where the 
local helical axes are not aligned. In this event, the 
simple definitions of rise and twist given earlier no 
longer apply and we must also be able to describe 
the relative position of the two helical axes in space. 
This is done using a mean axis system (ri,d,fcen- 
tered a t  point 8) as shown in Figure 4. This system 
is defined by the equations below. 

f = , x d  

The intersection of the U vectors with the mean 
plane (perpendicular to A) are then 

We can now derive expressions for parameters de- 
scribing the relative position of the helical axis sys- 

5.14 
8.79 

50.11 
-57.79 

34.95 
14.47 
3.58 

0.23 
--0.16 

--1.13 
-0.76 
-1.79 

5.71 
1.52 

-4.33 
15.08 
16.77 

27.02 
14.86 
20.55 
12.02 
7.51 

-12.30 

-1.49 
-4.35 

-11.11 
-4.29 
16.36 
-3.49 
-3.52 
-4.10 

0.02 
-1.95 

1.73 
2.20 

-0.02 
3.66 

-6.93 
12.76 

-29.99 
-57.71 

14.61 
25.36 
22.55 

1.66 
-7.32 

0.22 
0.32 
0.53 
0.40 
0.27 
0.22 
0.16 
0.11 
0.07 
0.01 
0.04 
0.07 
0.15 
0.09 
0.18 
0.38 
0.32 
0.98 
0.23 
0.71 
0.37 
0.21 
0.25 

5.35 
9.80 

51.25 
57.93 
38.48 
14.88 
5.02 
4.10 
0.23 
2.25 
1.89 
2.84 
5.72 
3.91 
8.17 

19.73 
34.26 
58.90 
30.66 
29.33 
30.42 
12.13 
10.48 

tems a t  this junction. Two translations along the d 
and f axes are defined as 

Axis X displacement = 2 T(pl - P 1 - l )  

Axis Y displacement = f T  (p ,  - 

Similarly, two rotations, analogous to inclination 
and tip, are defined as 

axis inclination = 2 c0s-l (f' t), + positive if$ 
gcx i ) > O  

axis tip = 2 c0s-l (F'U,), positive if F(i. x U,) > o 

where f = (u, x d)/  U, x dl and i = (d x A/ 
Id x il. 

It is also possible to derive three subsidiary 
parameters which can be useful. These para- 
meters measure the net angle formed between 
successive helical axis vectors [axis bend, 
Ab = ~ o s - ~ ( U , - , ~ ~ , ) ] ,  the net lateral dislocation 
between successive P points [axis dislocation, 
Ad = d m ,  and the distance between suc- 
cessive P points (path length, path = ~ P ,  - PC-, I 1. 

Lastly, we can define the general parameters for 
the interpeptide junction by three translations: 

shift = d3c (i) + Ax - dx (i-1) 
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Residue 

Fig. 11. Localization of secondary structure zones in ~ ra rnb in ’~  (open 
rectangles) using axis bend angles. 

slide = d y ( i )  + A y  - dy(i-1) 

and three rotations: 

roll = O(i) + OA - O(i-1) 

Note that the f +  and f -  vectors are obtained by 
rotating the f vector by (axis incl.)/2 and -(axis 
incl.)/2, respectively, around d .  The first term of 
twist is positive if O?(f+ x W J  > 0 and the second 
term is positive if O,-lT(f- x Wz-l) < 0. 

All of the parameters we have defined are sum- 
marized in Table I and illustrated schematically in 
Figure 5 .  For clarity they have been divided into 
three classes: A, peptide-axis parameters; C, inter- 
peptide parameters; D, axis junction parameters. 
Note that these classes correspond to those we have 
previously defined for the nucleic acidsI4 and that 
class B parameters (which apply to base pairs and 
thus exist only for double helices) are not defined for 
polypeptides. 

Before turning to the applications of the P-Curve 
algorithm we should remark that the parameters we 
have discussed are all “global” parameters since 
they are defined with respect to a unique overall 
helical axis. It would also be possible to  define a set 
of “local” positional parameters which would simply 
locate each peptide with respect to  the preceding res- 
idue in the chain. This would require six parame- 
ters, three translations and three rotations, but 
would not generate, nor make any use of an overall 
helical axis. While such an approach is mathemati- 
cally rigorous and, if properly formulated, leads to  a 

complete and independent set of parameters,’* it 
would not lead to  much improvement over the sim- 
plest local view of protein conformation, namely, the 
+/+ angles. In particular, the possibility of measur- 
ing the curvature and the exact folding of the back- 
bone would be lost and thus global comparisons of 
related proteins would also become very difficult. 

The “P-Curve” algorithm described has been in- 
corporated in a fortran program which is available 
on request (from R.L.). This program accepts protein 
atomic coordinates in a variety of formats including 
that of the protein data bank16 and outputs both a 
helicoidal analysis and a full torsion angle analysis. 
Graphic output files can also be generated showing 
the protein helical axis and a ribbon representation 
of the backbone, with or without side chain atoms. 

RESULTS AND DISCUSSION 
We will now present some applications of the P- 

Curve approach to both regular polypeptides and na- 
tive protein conformations and we will also discuss 
the study of the fine details of secondary structure. 

Analysis of Symmetric 
Polypeptide Conformations 

In order to  gain some feeling for the new helicoi- 
dal parameters that we have defined, it is easiest to  
begin by applying the P-Curve algorithm to regular 
secondary structures. In these cases the helical axis 
is, by definition, a straight line and only the four 
peptide-axis parameters and interpeptide rise and 
twist can have nonzero values. The parameters ob- 
tained for a number of well-known structures are 
listed in Table I1 along with the corresponding I$/$ 
values. The same structures are illustrated by back- 
bone ribbons in Figure 6. 

Comparing Table I1 and Figure 6, it can be seen 
that, in addition to the easily understandable rise 
and twist values, the remaining parameters allow 
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Fig. 12. Variation of the helicoidal parameters of the terminal residue of an a-helix 
(residues 58-77) extracted from oxymyoglobin2’ as a function of the limit of the P-Curve 
analysis in the C-terminal direction. 

us to judge the radius of the helical structure (al- 
most directly equal Y displacement, since X dis- 
placement values tend to be very small) and also of 
the orientation of the peptide plane with respect to 
the helical axis, through the inclination and tip val- 
ues. 

Since regular structures naturally lead to regular 
helicoidal parameters it is also possible to make +/+ 
plots of these parameters for the full range of the 
backbone torsion angles. The results of such a study 
are presented in Figure 7. From these data it is pos- 
sible to see immediately what type of structure will 
result for any given +I$ combination and to deter- 
mine the correlations which exist between the dif- 
ferent helicoidal parameters. 

It should be mentioned at this point that we have 
not assumed anything about the nature of the link- 
ages within the peptide backbone and thus six pa- 
rameters are necessary to define the position of suc- 
cessive peptides in space. In fact the chemical 
bonding within a polypeptide means that there are 
only two single bond torsions between any two pep- 
tides and thus we can expect quite strong correla- 
tions between our six helicoidal parameters. How- 
ever, in any real protein structure, variations in the 
peptide bond torsion (0) and in valence angles or 
bond lengths will mean that these correlations can 
be only approximate. Thus, a rigorous geometrical 
description of a protein must nevertheless conserve 
the full number of variables that we have defined. 

It should further be stressed that the unique rela- 
tionship between the backbone torsions 4 4  and the 

helicoidal parameters illustrated by Figure 7 is true 
only for regular structures. In real proteins the con- 
formational environment of any given peptide unit 
(that is to  say, the structure adopted by the residues 
preceding and following the peptide unit considered) 
will influence the position of its local helical axis, 
during minimization of the function F(h),  and con- 
sequently its helicoidal parameters. Therefore it is 
clear that no simple relationship between these pa- 
rameters and the +/$ values of the peptide can exist. 
We will return to  this point shortly. 

Analysis of Native Protein Conformations 

We now apply the P-Curve algorithm to protein 
conformation analysis. Three proteins have been 
chosen as examples to illustrate the nature of the 
data which can be obtained: crambin,lg bovine pan- 
creatic trypsin inhibitor,20 and sperm whale oxy- 
myoglobin.21 The graphic data resulting from the 
analysis of these proteins are presented in Figures 
8-10 by stereodiagrams of the protein backbone rib- 
bon with the calculated helical axis and of the heli- 
cal axis alone. Note that the smooth curve presented 
for the helical axis is generated by a cubic spline fit 
to the Pi,oi data obtained from P-Curve. 

Figures 8-10 show the visual nature of the results 
obtained from our algorithm. For any protein, re- 
gions with regular secondary structures (most com- 
monly, a-helices and p-sheets) are easily visible as 
straight portions of the axis. These segments are 
linked by curved zones corresponding to irregular 
conformations of the polypeptide backbone. On a 
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Fig. 13. Variation of the helicoidal parameters of the terminal residue of a @-sheet 
(residues 29-35) extracted from BPTIzo as a function of the limit of the P-Curve analysis in 
the C-terminal direction. 

graphics system it is possible to  color the axis fol- 
lowing the type of secondary structure detected and 
thus to  obtain a very simple, but nevertheless rig- 
orous, description of the folding of the polypeptide 
chain. 

In addition to the graphical data, the P-Curve 
analysis also lists all the helicoidal parameters de- 
scribed previously. For reasons of space we can 
present only a part of these data here. We have cho- 
sen to discuss the first 25 residues of the smallest 
protein treated, crambin. The parameters obtained 
for these residues are listed in Tables 111-V. These 
results will serve to illustrate how our analysis dif- 
fers from simple +/$torsion angle or hydrogen bond- 
ing data. 

In order to  get a quick idea of the localization of 
regular secondary structures, the three-dimensional 
helical axis of crambin shown in Figure 8 can be 
simplified to two dimensions by plotting the bending 
angle at  each junction of the helical axis. This is 
shown in Figure 11. Secondary structures are now 
easily distinguished from irregular zones by the low 
values of their axis bends. If we place a bar a t  15" 
bending, we immediately detect five relatively 
straight zones: 1-4, 8-17, 24-28, 33-34, and 39- 
40. (Note from Fig. 1 that the division of the peptide 
chain we have adopted implies that if an interpep- 
tide junction i-j is bent, then the peptidej should be 
included in the irregular zone.) 

Looking at  the data in Tables 111-V and compar- 
ing it with the standard structures in Table 11, we 
can rapidly identify the first three zones as a @-sheet 
followed by two a-helices (the remaining two zones, 
not shown in the tables, are again @-sheets). The 
most useful values for this identification are Y dis- 
placement, tip, rise, and twist, which all distinguish 
clearly between a and @ sbructures. Regular zones 

may also be detected through the small values of the 
interpeptide parameters shift, slide, tilt, and roll. 
However, it should be noted that none of the second- 
ary structures is quantitatively regular and we will 
return to the description of distortion within these 
segments in the following section. 

If we compare our findings with those listed by the 
author of the crystallographic study of crambinlg 
within the corresponding protein data bank entry, 
several differences can be found. The original as- 
signments for secondary structure zones were lim- 
ited to four segments: 1-4 (@), 7-19 (a), 23-30 (a), 
and 32-35 (PI. All but the first of these zones is 
wider than our findings and the last P-sheet we have 
located was not seen. It is interesting t o  look in de- 
tail at  the assignment of the first a-helix with the 
help of the parameters in Tables 111-V. From these 
data it would seem the residues 7, 18, and 19 cannot 
easily be classed as belonging to the helix. All these 
residues have tip values far from those of the a-helix 
and Y displacement for 18 and 19 is too small. More- 
over, the junctions 6-7, 17-18, and 18-19 are all 
distinctly bent and associated with important tilt 
and roll values. 

Looking at  the +/+ values in Table I11 it is easy to 
see that, in the case of a folded polypeptide chain, 
there is no longer any precise correlation between 
the backbone torsions and our helicoidal parame- 
ters. When the F(h)  function of the P-Curve algo- 
rithm is minimized, the residues preceding and fol- 
lowing any given peptide group influence its 
helicoidal parameters. Thus, while at  least peptides 
7 and 18 can be classed as a-helical on the basis of 
their +/$ values, they cannot in terms of their heli- 
coidal parameters. 

The effect of neighboring residues in our analysis 
can be shown clearly if we look at  other examples of 
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TABLE VI. Classification of the Deformation in the Structural Zones 
Found for Crambin"* 

Residues Ul(A)  U,(A) Radius(& Path(& Type Class 
Curved 
Curved 5 -7 0.47 0.00 3.43 5.52 - 

8-17 0.12 0.10 145.89 13.85 a Linear 
18-23 1.14 0.35 6.38 13.13 - Curved 
24-28 0.12 0.07 19.39 5.72 a Curved 
29-32 0.95 0.18 3.80 8.48 - Curved 

Linear 
Curved 

3.28 P 33-34 0.00 - - 
35-38 0.94 0.15 4.06 8.79 - 

- 3.08 P Linear 39-40 0.00 - 
41-46 1.02 0.17 3.71 9.11 - Curved 
*ul, rms deviation with respect to  a line; uc, rms deviation with respect to a circle. 

1-4 0.11 0.05 59.29 10.13 P 

regular secondary structures which are followed by 
sharp bends. We have chosen two such cases from 
other proteins, first, an a-helix between residues 58 
and 77 in oxymyoglobinZ1 and, second, a P-sheet be- 
tween residues 29 and 35 in BPTI.20 In both cases we 
will concentrate our attention on one peptide at  the 
C-terminal end of these secondary structures. Anal- 
yses have been made for these fragments alone and 
then repeated while adding residues one by one to 
the C-terminal end. 

The effect of extending the fragment analyzed on 
the parameters of the terminal peptides (numbers 
77 in myoglobin and 35 in BPTI) can be seen in 
Figures 12 and 13, respectively. Both graphics show 
that all parameters are indeed influenced by the 
change of the conformational environment. The 
change amounts to a maximum of roughly 0.5 A for 
translational parameters and can exceed 10" for ro- 
tational parameters. Reference to the parameters 
obtained for standard conformations in Table I1 and 
the +/$ plots of the helicoidal parameters in Figure 
7 shows that these changes are by no means negli- 
gible. 

We can thus conclude that the P-Curve analysis 
differs from any description of protein structure 
based only on local data such as backbone torsion 
angles or hydrogen bonds. The data in Figures 12 
and 13 show that, with our approach, the parame- 
ters describing any given peptide (with given +/ti( 
angles) will depend on the position of at  least four 
residues on either side of it in the polypeptide chain. 
This clearly leads to differences concerning position- 
ing and the deformation of secondary structure mo- 
tifs, but it also corresponds to a more global and 
coherent view of the overall protein conformation 
than can be obtained from data referring only to 
isolated peptide groups. 

Analysis of Secondary Structure Deformation 
We finally consider how the P-Curve analysis can 

be used to study fine deformations within secondary 
structures. If we return to the example of crambin, it 
is possible to  make a detailed analysis of each zone 
of the protein that was detected by plotting the axis 

bend angles (see Figure 11). The analysis is per- 
formed by testing each segment (secondary struc- 
tures and intermediate zones) through least squares 
fits to the P ,  points of the constituent residues using 
both a straight line and a circle. Note that a similar 
analysis of protein a-helices has been presented by 
Barlow and Thornton12 using as data points on an 
approximate helical axis determined by least- 
squares fitting of a "probe" helix11J2 to  successive 
residues of the segment. 

The results are presented in Table VI which con- 
tains the standard deviation obtained with a 
straight line ((T~), the standard deviation and the 
radius obtained with a circle (u,,R) and the length of 
each segment (path, defined as the sum of the dis- 
tances between successive P i  points). The distinction 
between the secondary structure segments and the 
intermediate zones of crambin now becomes clear. 
The longest a-helix (8-17) can effectively be classed 
as linear, while the second (24-28) is curved with a 
radius of 19 A. The first P-sheet (1-4) is also curved, 
but with a larger radius (59 A). (The remaining P- 
sheets are automatically classed as linear since they 
contain only two residues.) In contrast, the interme- 
diate zones are all very strongly curved with radii 
varying between 3 and 6 A. Within these zones the 
only notable departure from a circular pathway oc- 
curs for the six residue segment 18-23 ( I J = ~ . ~ ~ ) .  

Work is now in progress to analyze a large number 
of well-resolved protein structures. Distribution 
plots of the helicoidal parameters obtained from the 
sum of these analyses will enable us to generate 
rigorous definitions for each type of secondary struc- 
ture. In combination with the localization of second- 
ary structure zones described above we will then 
hopefully be in a position to extract new and inter- 
esting information from protein crystallographic 
data. 

CONCLUSIONS 
We have described a rigorous algorithm for ob- 

taining a helicoidal description of protein conforma- 
tion. This method, termed P-Curve, yields a com- 
plete and independent set of helicoidal parameters 
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and a unique overall helical axis for any protein 
whose backbone atomic coordinates are known. The 
approach makes use of an extended least-squares 
minimization procedure to  yield an optimal helical 
description where structural irregularities are dis- 
tributed between changes in the orientation of suc- 
cessive peptide groups and curvature of the overall 
helical axis. Using the P-Curve algorithm has two 
fundamental advantages. First, the algorithm gives 
a coherent overall view of the entire protein confor- 
mation and also allows detailed information of the 
positioning of individual peptides to  be extracted. 
Second, the location of secondary structures and 
measures of the deformation of these segments or 
intermediate zones of the backbone can be obtained 
automatically. 

The P-Curve algorithm has obvious applications 
for describing protein folding patterns and for the 
automatic comparison of related proteins or 
searches of chosen conformational fragments within 
data banks of protein structure. It may also be of 
considerable interest in analyzing the data from mo- 
lecular dynamics studies of proteins where the ex- 
traction of easily readable information is often a ma- 
jor problem (for a similar application to a nucleic 
acid oligomer see ref. 22). 
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