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ABSTRACT 
A practical procedure (FUERZA) to obtain internal force constants from Cartesian second 
derivatives (Hessians) is presented and discussed. It allows a systematic analysis of pair 
atomic interactions in a molecular system, and it is fully invariant to the choice of 
internal coordinates of the molecule. Force constants for bonds or for any pair of atoms in 
general are defined by means of the eigenanalysis of their pair interaction matrix. Force 
constants for the angles are obtained from their corresponding two-pair interaction 
matrices of the two bonds or distances forming the angle, and the dihedral force 
constants are similarly obtained using their corresponding three-pair interaction matrices. 
0 1996 John Wiley & Sons, Inc. 

Introduction 

lassical molecular dynamics methods that C analyze the time evolution of macroscopic 
systems for several thousands of time steps or 
conformations have become very effective tools for 
gaining insight into a variety of macroscopic sys- 
tems and processes [l, 21. Most of this work has 
involved the use of empirical force fields obtained 
from experimental measurements of geometries, 
heats of formation, vibrational frequencies, and 
barrier heights. However, with the increasing ac- 
curacy and availability of first-principles methods 
(standard ab initio and density functional theory), 
there is a growing tendency to obtain the force 
field data from high-level computations on the 

basic molecular units [3-71. This makes it possible 
to treat macroscopic systems that have not yet 
been investigated experimentally or that may not 
even exist at present. 

In early molecular dynamics (MD) simulations, 
there was only limited use of intramolecular force 
fields, primarily because the time step could be 
increased more than twofold when molecules were 
constrained to having fixed bond lengths and 
sometimes angles (the SHAKE method [S]). How- 
ever, for studying the effects of external factors, 
such as temperature and pressure, upon molecular 
properties of a fluid 19-11], e.g., shifts in vibra- 
tional spectra [12], the force field clearly must 
include an intramolecular component. 

If the intramolecular portion of the force field is 
expressed in terms of force constants correspond- 
ing to molecular internal coordinates (bond lengths, 
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bond angles, and dihedral angles), then a signifi- 
cant problem that arises is that of assuring invari- 
ance of the individual internal force constants with 
respect to the chosen set of internals. A given 
molecule can be described by various sets of inter- 
nal coordinates, and these may give different val- 
ues for a particular internal coordinate force 
constant. Thus the internal force constants, and 
therefore their intramolecular force field, are not 
invariant to the choice of internal coordinates. This 
is due to fact that physical force constants are 
tensors of rank 2, but we want to use them in 
practical MD simulations as scalars (tensors of 
rank 0). An example of this problem can be visual- 
ize with the cyclic chon molecule: 

H 
I 
c 
/ /  

N-0 

A quick HF/STO-3G calculation yields a force 
constant for the CO bond of 0.54 a.u. if the chosen 
internals are the CO bond, CN bond, and NCO 
angle; 0.57 a.u. if we choose the CO bond, NO 
bond, and CON angle; and 0.26 a.u. if we choose 
redundant internal coordinates [ 1 3 ]  CO, NO, CN, 

d ,E 

d 2 E  

- 
d x: 

d 2 E  

CNO, NOC, and OCN (for the sake of clarity, the 
coordinates containing the hydrogen atom are not 
mentioned in this example). The choice of a value 
of the force constant to be used in MD calculations 
is therefore ambiguous. In this study, we present a 
procedure to compute, in an invariant fashion, the 
force constants corresponding to internal coordi- 
nates. 

Background 

The 3N component reaction force S F  due to a 
displacement S x  of the N atoms in a molecular 
system can be expressed exactly to second order 
on a Taylor series expansion as 

where [ k ] ,  the Hessian, is a tensor of rank 2 and 
dimension 3N X 3N defined by 

Explicitly, Eq. (1) can be written as 

d 2 E  

d x ,  d x ,  

d 2 E  

d.2’ 

d 2 E  

S F =  - [ k ] S x ,  (1) 

d x ,  d x ,  

d 2 E  

dx, a x 3  

d 2 E  

d X 3  d x ,  

d ,E 

d x 3  d x ,  

d 2 E  

d x 3 N  d x l  d x 3 N  d x 2  

Tensor [ k l  can be obtained by procedures avail- 
able in density functional theory and ab initio 
programs such as deMon [14,151 and Gaussian 94 
[ M .  

The tensor [ k ]  represents the intramolecular 
force field to second order for small displacements 
Sx. The eigenvalues hi of [ k ]  are the 3N force 

d x ,  d x 3  

d 2 E  

d X3’ 
- 

d 2 E  

d x 3 N  d x 3  

d 2 E  

d 2 E  

d 2 E  

... 
d x 3 N  

... 
d x 2  d x 3 N  

... 
d x 3  

d 2 E  ... 
d 4 N  

6 X 3 N  

( 3 )  

constants corresponding to the 3 translational, 3 
rotational and 3N-6 vibrational modes of the sys- 
tem. The eigenvectors Pi of the Hessian [ k ]  indi- 
cate the directions of the displacements of the 
normal modes corresponding to each eigenvalue. 
If a displacement of magnitude 6 r  occurs in the 
direction of one of these eigenvectors, the reaction 
force acts exclusively parallel or antiparallel to that 
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direction: late the force field to internal coordinates, which 
can generally reduce the number of terms to as 
few as 3N-6. The potential energy function is then 

1 1 
V = C -k,(b - b,)' + c - k , ( 6 ' -  13,)~ 

2 2 

F, = - [ k l i t i 6 r  = -hiCi6r. (4) 

Displacements in any other direction result, in 
most cases, in a reaction force that is not in the 
direction of the displacement vector. aneles bonds " 

1 The use of the symmetric tensor [kl in a molec- 
ular simulation could be cumbersome because of + c p , ( 4  - 4J2 

+ c y k , ( W  - 0,) 

the large number of independent elements, 3N(3N dihedrals 

1 2 
+ 1)/2. Many of these may be relatively small in 
magnitude, as is shown in Figure 1 for the case of 
nitromethane. A more practical approach is to re- impropers 

x o l  yo1 z o l  

489 0 -7 -201 0 4 9 0 -84 -1 -6 38 -1 

0 1934 0 0 -164 0 0 -5 0 -1 -7 4 9  1 

-7 0 1322 1 0 -231 -1 0 -39 -6 2 -25 -6 

-201 0 1 1241 0 -27 -653 0 -151 -236 237 81 -236 

0 -164 0 0 1389 0 0 -98 0 233 -536 -131 -233 

4 0 -231 -27 0 788 -158 0 -138 91 -154 -150 91 

9 0 -1 -653 0 -158 694 0 173 -25 4 -8 -25 

0 -5 0 0 -98 0 0 94 0 55 5 19 -55 

-84 0 -39 -151 0 -138 173 0 162 22 3 10 22 

-1 -1 -6 -236 233 91 -25 55 22 240 -254 -91 19 

-6 -7 2 237 -536 -154 4 5 3 -254 562 164 27 

38 -69 -25 81 -131 -150 -8 19 10 -91 164 171 -14 

-1 1 -6 -236 -233 91 -25 -55 22 19 27 -14 240 

6 -7 -2 -237 -536 154 4 5 -3 -27 -33 17 254 

38 69 -25 81 131 -150 -8 -19 10 -14 -17 10 -91 

-147 12 9 43 4 4 0 3 9 2 2 -3 0 

8 -875 -366 0 -28 -51 2 0 0 -2 5 -3 3 

9 -372 -501 8 -94 -60 1 -3 -2 -3 -3 -19 0 

-147 -12 9 43 4 4 0 -3 9 0 -1 4 2 

-8 -875 366 0 -28 51 -2 0 0 -3 4 3 2 

9 372 -501 8 94 -60 I 3 -2 0 5 3 -3 
- 
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FIGURE 1. Hessian matrix (kcal /A' moll for the staggered conformation of CH,NO,. 
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yo2 2 0 2  
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The pair interaction matrix that gives the reaction force on the atom N due to a displacement of atom C is 
given by 

= [yi 164 0 :][ 
0 231 62, "z, 
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in which b, 8, +, and w correspond to the bond 
lengths, bond angles, dihedral angles, and im- 
proper dihedrals (out-of-plane); b,, 8,, +u, and w, 
are their equilibrium values; and k , ,  k,,  k, ,  and k,,, 
are the respective force constants (the indexes for 
bonds, angles, dihedrals, and impropers are not 
shown). We will now show how to obtain an 
invariant force constant corresponding to any in- 
ternal coordinate. The same procedure can be ap- 
plied for force fields that contain cross terms such 
as 

1 C - k , , ( b  - b,)(6 - 8,) (6) 
bonds & angles 2 

Method 

BOND FORCE CONSTANTS 
The essential concept is to analyze the interac- 

tions between all pairs of atoms in the molecule 
and to determine which ones are pairwise stable, 
the criterion for which shall be explained. From 
Eq. (3), we can get the reaction force 6FA = 

(6FxA, 6Fy,, 6FzA)  on atom A due to a displacement 
6 r ,  = (ax,, 6 y B ,  62,) of atom B: 

A and B. It has three eigenvalues AfB and three 
eigenvectors CAB ( i  = 1,2,3), which we assume to 
have unitary norm. An example of one interatomic 
force constant matrix of nitromethane molecule is 
also shown in Figure 1. 

The physical interpretation of Eqs. (7) and (8) is 
as follows: If a particular eigenvalue A t B  of [ k,,] 
is positive, this means that the reaction force on A 
due to a displacement of B in the direction of GAB 
is in the same direction. If all three eigenvalues are 
positive, then for any displacement of B there is 
always a restoring reaction force on A that seeks to 
maintain the original interatomic separation. The 
atoms A and B are then described as pairwise 
stable. All pairs of formally bonded atofns belong 
to this category, as well as some between which 
there is no formal bond but such a strong interac- 
tion that the atoms can be viewed as bonded. If 
one or more eigenvalues are negative, then A will 
not feel a restoring reaction force trying to main- 
tain unchanged the AB separation. This condition 
is described as a pairwise unstable interaction, and 
we conclude that A and B are not bonded. The 
same conclusion is reached when two of the three 
eigenvalues or eigenvectors are complex. 

If one of the eigenvectors, CAB,  is in the direc- 
tion from A to B, which shall be described by the 
unit vector GAB,  and forms and orthonormal sys- 
tem with the other two eigenvectors, then the force 
constant for the interaction between A and B, 
whether they are bonded or not, is, 

k,, = AAB (9) 

When the direction from A to B does not coincide 
with that of any of the eigenvectors, or when the 
eigenvectors are not orthogonal to each other, then 
the force constant k,, may have contributions 
from more than one eigenvalue of [ k,, I in propor- 
tion to the projections of the corresponding eigen- 
vectors upon the unit vector G A B :  

or in compact notation, 

6F, = [ k ~ , ] 6 r ~ .  (8) 

The interatomic force constant matrix [ k , , ] ,  de- 
fined including the minus sign, permits an analy- 
sis of the nature of the interaction between atoms 

Equation (9) is clearly a special case of Eq. (10). 
The magnitude of k,,, as given by these equa- 
tions, is obtained directly from the eigenvalues of 
the matrix [ k,,] in Cartesian coordinates, and 
hence is invariant to the choice of internal coordi- 
nates. This invariance is a fundamental require- 
ment for any physical quantity. 
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BOND ANGLE FORCE CONSTANTS 

Consider the bonds AB and CB which have unit 
vectors GAB and CCB. Their interatomic matrices 
[kAB] and [k , , ]  have eigenvalues hfB and hFB, 
and eigenvectors $AB and $fB ( i  = 1,2,3). Let tiN 
be a unit vector perpendicular to the plane ABC: 

Then the unit vectors perpendicular to the bonds 
AB and CB on the plane ABC are 

iiN x CAB (12) ;PA = 

and 

x G N .  (13) 

They are the direction of small displacements of 
atoms A and C that result from opening or closing 
the angle ABC. If RAB and R,, are the length of 
the bonds, the bond angle force constant is then 
given by 

;PC = ;CB 

1 1 
3 + - 

1 
- -  

3 

ko R i B  c A f B l f i P A .  $AB\ R;, c lfiPc .  $FBI 
i =  1 i =  1 

(14) 

DIHEDRAL ANGLE FORCE CONSTANTS 

Consider the dihedral angle defined by the 
atoms A, B, C, and D which are linked by bonds 
AB, BC, and CD. The approach is similar to that 
used for bond angles. Unit vectors perpendicular 
to the planes ABC and BCD are given by 

(15) 

;DC ;BC 
A (16) - 
UNBcD - l;DC ;BCl. 

The dihedral angle force constant is then 

1 - 1 
- _  

IMPROPER DIHEDRAL (OUT-OF-PLANE) 
ANGLE FORCE CONSTANTS 

Let atoms B, C, and D be connected to the 
central atom A. Then the out-of-plane angle oABCD 

is defined as the angle between planes ABC and 
BCD. The movement of A perpendicular to the 
plane BCD feels a restoring force from the bonds 
AB, AC, and AD. The effective force constant for 
the movement of A perpendicular to BCD is given 
by the sum of the three bond contributions: 

3 3 

k AN = A P l a N  - $AB\ + c hfClaN.  $AC\ 
3 

i =  1 i = l  

+ c h f D I P  * CADI, (18) 

where iN is a unit vector perpendicular to the 
plane BCD. Then the out-of-plane force constant 
for the angle wABCD is 

i =  1 

(19) 

where hABCD is the length of projection into the 
plane BCD of the altitude of triangle ABC (with 
base BC). 

k ,  = kOABCD - - 2  ~ A B C D ~ A N  

Applications 

We have coded the preceding equations in the 
program FUERZA. It is presently designed to read 
the Cartesian Hessian tensor from the output of a 
Gaussian [16] program after a frequency (FREQ) or 
second derivative of the energy has been re- 
quested. The output format of FUERZA is compat- 
ible with the input format of the molecular model- 
ing program CHARMm [17]. These features can, of 
course, be modified to be consistent with other 
programs. 

In the applications that follow, we used a proce- 
dure based on density functional theory (DFT) 
available in the program Gaussian 94 [16] to opti- 
mize geometries and compute the second deriva- 
tives of the energy. The Becke 88 [18] and the 
Lee-Yang-Parr [ 191 functionals were used to repre- 
sent the exchange and correlation potentials, 
respectively. However, our method can be imple- 
mented with any other DFT, ab initio or semiem- 
pirical technique. In the cases to be discussed, 
FUERZA used the force constants in the output of 
a frequency DFT calculation to create the in- 
tramolecular force field, which was subsequently 
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used in conjunction with CHARh4m for a classical 
calculation of vibrational frequencies. The extent to 
which these reproduce the original DFT frequen- 
cies is a measure of the quality of the constructed 
force field. (The DFT procedure being used is 
known to be effective for vibrational frequencies 
[20, 211.) In the trivial case of diatomic molecules, 
exact agreement is obtained, as it must be, since 
there is only one independent internal coordinate 
and hence one possible force constant. 

In the following, all bond lengths are in A, 
angles in degrees, bond force constants in kcal/A2, 
angular force constants in kcal/rad2, frequencies 
in cm-l, and doubly or higher degenerate vibra- 
tional modes are listed only once. 

" 2 0  

The DFT values for the bond length and bond 
angle are 0.976 and 102.7; the corresponding force 
constants are 1067 and 80.4, as compared to 900 
and 110 in the CHARMm force field. All three 
eigenvalues of the interaction matrix [ K H H ]  are 
positive, indicating a stable HH interaction which 
should be included in the force field. The equilib- 
rium HH distance is 1.249 and the force constant is 
31.1. The vibrational frequencies obtained with this 
force field are 1555, 3674, and 3679; the DFT fre- 
quencies are 1636, 3643, and 3754 respectively. 

NO 

The DFT bond lengths and bond angle are 1.224 
and 133.1, and the corresponding force constants 
are 1334 and 242. No stable 00 interaction is 
found. The created force field frequencies are 703, 
1201, and 1630, compared to the DFT 713, 1301, 
and 1586. 

CH, 
For this radical in D,, symmetry, the DFT bond 

length is 1.089 and the bond force constant is 768. 
The bond angle and out-of-plane force constants 
are 62 and 12.2. The resulting force field frequen- 
cies are 449, 1426, 2997, and 3186, while the DFT 
are 459,1386,3059, and 3236. 

CH,NO, 

It should be noted that parameters for nitro 
derivatives are not available in any of the standard 
force fields. The frequencies calculated with the 

FUERZA program, with the DFT values given in 
parentheses, are: 577(572), 606(619), 945(866), 
1000(1067), 1081(1091), 1176(1323), 1278(1370), 
1294(1436), 1418(1450), 1694(1558), 2912(3014), 
3033(3107), and 3064(3136). The first two frequen- 
cies are not given, since they correspond to the 
lowest torsional modes, in which anharmonic ef- 
fects are particularly significant; accordingly, nei- 
ther harmonic approximation, empirical nor DFT, 
is meaningful. 

CIS-RH(PH3 ),(COIF 

The results of an earlier DFT study 1221 were 
used to make a more demanding test of the pre- 
sent approach. The force field frequencies ob- 
tained, with the DFT values in parentheses, are: 
91(102), 91(107), 91(114), 92(115), 254(271), 260(274), 
292(297), 393(403), 408(448), 419(465), 422(470), 
434(477), 452(522), 782(530), 801(968), 966(993), 
971( 1095), 971(1095), 991(1098), 1328(1100), 
1925(1935), 2315(2362), 2315(2364), 2339(2386), 
2339(2388), 2348(2390), and 2361 (2390). The fre- 
quencies for the lowest three torsional modes are 
not given, again because anharmonic effects ren- 
der them useless. 

Conclusion 

Overall, the vibrational frequencies obtained 
with the FUERZA force fields are in very good 
agreement with those resulting from the DFT orig- 
inal calculations, over a wide range of values. This 
supports the physical validity of the approach that 
we have presented for obtaining an intramolecular 
force field in terms of force constants that are 
invariant to the choice of internal coordinates. The 
procedure can be applied to any molecular system 
for which Cartesian second derivatives of the en- 
ergy are available. 
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