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ABSTRACT _

Two traditional clustering algorithms are applied to configurations from a long
molecular dynamics trajectory and compared using two sets of test data. First, a
subset of atoms was chosen to present conformations which naturally fall into a
number of clusters. Second, a subset of atoms was selected to span a relatively
continuous region of conformational space rather than form discrete
conformational classes. Of the two algorithms used, the single linkage method is
inappropriate for this kind of data. The divisive hierarchical method, based on
minimizing the difference between cluster centroids and extrema, is successful
but also prone to imposing clustering hierarchy where none can be justified.
© 1994 by John Wiley & Sons, Inc.

Introduction

A typical molecular dynamics (MD) simulation- may generate thousands of configurations of
:1 system separated by regular steps in time. If,
~owever, one is interested in structural (rather
:han dynamic) properties, this implicit time axis
will serve more as a nuisance than as a useful
property. In this case, one wants to identify states
which are frequently and repeatedly populated,
regardless of when they occur in a simulation. By
definition, this amounts to a requirement for tradi-
tional statistical cluster analysis.

* Author to whom all correspondence should be addressed.

Regardless of the clustering algorithm used, any
cluster analysis procedure will require a similarity
matrix in which each element represents the struc-
tural difference between a pair of structures. It is
also often convenient to regard this matrix as the
distance matrix for a high-dimensional polygon in
which each point represents a single structure. In
1983, Levitt1 calculated such matrices and their
projections into two-dimensional Cartesian coordi-
nates. These projections could then be used to
sketch out the path of a trajectory and suggest the
presence of clusters in conformational space. The
problem with this approach is that the high-
dimensional polygon corresponding to the original
distance matrix may be poorly represented in
two-dimensional space and, for example, points
close in the low-dimensional space may actually
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be separated by larger distances before the projec-
tion.
True automatic cluster analysis has been ap-

plied to conformations, although not necessarily
from MD trajectories. Unger et al.2 looked at more
than 80,000 hexamer fragments taken from litera-
ture protein structures. After an initial assessment
of the data, a 1A cutoff of root mean square (rms)
difference in coordinates was used for both the
formation of initial clusters and the centers of new
clusters during an iterative process. This proce-
dure effectively reduced the mass of data to about
100 important structural units. Rooman et a1.3clus-
tered short peptide fragments into a hierarchical
scheme based on the sum of the squared distances
of individual elements to the cluster's center of
mass. This was extremely successful in identifying
broad conformational classes and recurring motifs.
Karpen et al.4 used an iterative approach to cluster
15,000 configurations from a trajectory of a pen-
tapeptide based on differences in dihedral angles.
This method strongly relied on the selection of an
arbitrary cluster cutoff distance based on argu-
ments about what constituted a distinct conforma-
tion as compared to thermal fluctuations.
Finally, a novel approach to cluster analysis of

trajectories was applied by Gordon and Somorjai.s
Fuzzy cluster analysis was used to group parathy-
roid hormone fragment conformations into a pre-
determined number of clusters. This method has
the advantage that it retains the idea of reducing a
mass of structures down to a manageable number
of representative cluster centres while conceding
that cluster membership is not absolute. A transi-
tion state, for example, may well be best treated by
giving it fuzzy membership of more than one
cluster. Unlike the clustering methods which re-
quired the choice of a distance cutoff for cluster
membership, this implementation required a pre-
determined number of clusters.
In contrast to previous work, our aim was to

apply more than one clustering algorithm in an
attempt to determine what type of procedure best
suits the particular nature of MD configurations.
We also wished to assess the utility' of cluster
analysis for systems larger than the small peptides
typically used by previous workers. Furthermore,
it was of interest to use more than one data set,
because some data will form clusters naturally,
whereas some will have relatively little structure.
Finally, we were interested in algorithms which
did not require advance selection of cutoffs for
cluster size or the number of clusters.
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Methods

SIMILARITY MEASURES

Regardless of the cluster analysis algorithm, o.
needs a measure of how each element differs fr
every other. Root mean square differences
Cartesian coordinates have been used,2,sbut th
are two possible disadvantages. First, until y
recently, there was no evidence that this mea:.-
obeyed the triangle inequality. Second, we wis:
to avoid relying on optimal superposition of c
dinates, although this is only a minor techn:-
point. This problem could be avoided, as well
the necessity for coordinate superposition, by clu..
tering based on rms differences of dihedral angl~
Unfortunately, structural similarity is not necessc·
ily well correlated with the difference in interr.
angles. A small change in a single angle may lea
to a large structural change due to leverage effec:::
whereas two large changes in dihedral angles
lead to a minimal structural change. For examp:=
a peptide plane flip involves two large dihecb
angle changes, but possibly little overall struc
change.
For our analysis, we follow Rooman et al.3 aT

Levitt,l who constructed similarity matrices ba---
on the rms deviation of intramolecular distance:::
also referred to as the distance matrix error.6 ,.'

define the difference Dab between two confor--
tions, a and b, as

where the summation runs over all pairs ij of ~
N atoms being considered in the configurations .
and b. dij is the three-dimensional distance be-
tween atoms i and j. This measure has the advar--
tage that Dab is well correlated with the differenc'
between structures a and b. It has the clear disac-
vantage that it is not sensitive to chirality, so in th
extreme case, Dab = 0 for mirror image structur~
Fortunately, we do not expect chiral inversions c·
changes in overall fold during a MD trajector:'
The measure does obey the triangle inequality, s.-
if one know the high-dimensional distance d~
between conformers a and b and the distance d.
between conformers band c, this does put bouncE
on the distance dae between conformers a and:
This is more than a mathematical curiosity if WE
wish to apply a clustering algorithm which relie:::
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FIGURE 2. The divisive hierarchical clustering
algorithm applied to a set of two-dimensional points.

of points separated by this distance are called the
extrema and are circled in the figure.
The actual divisive algorithm is best explained

by Figure 2. Initially, all points are part of one
large cluster (A). After calculating the eccentricity
of each point, the two extrema (circled points) are
taken as the initial centroids for two new clusters.
Each point in the parent cluster is then appor-
tioned to one of the new clusters depending on
which centroid it is closest to. This division, shown
at stage B, results in some points falling on the
wrong side of the natural clustering line. The cen-
troid of ea2h of the new clusters is then calculated
(stage C) and the points are reapportioned (stage
D). The centers of the new clusters are recalculated
and the points reapportioned until the centroid
points are stable or a maximum number of itera-
tions is reached. We set the maximum number of
iterations to la, but in practice, convergence was
usually achieved in two or three cycles of centroid
calculation and reapportioning.
Although we did not observe any convergence

problems, conceptually, one can construct a set of
points with a number of outliers. If the outlying
points are sufficiently removed, they will form
their own clusters. More likely, they would have
the effect of distorting the final clusters. Because
they affect the selection of cluster centroid, they

cv•
••• •
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••••••

••
• •

ENERATION OF CONFIGURATIONS

FIGURE 1. Definitions of terms applied to clusters. The
crossed point is the cluster centroid, the circled points
are the extrema, and the arrow shows the cluster
diameter.

mowing the shortest path between two con-
ers.

HIERARCHICAL DIVISIVE ALGORITHM

The first clustering algorithm applied to the
data was .of the divisive hierarchical type.IS First
we define some properties of a cluster using the
analogy of a graph. From the similarity matrix, the
distance from each configuration to every other
configuration is known. The largest such distance
for a configuration is called the eccentricity of that
configuration. The configuration of smallest eccen-
tricity is known as the cluster centroid. This point
is marked by a cross in Figure 1. We can also
consider the largest single distance within a cluster
and call this the diameter of the cluster. This is
marked by the arrowed line in Figure 1. The pair

Configurations were taken 0.5 ps from a 1 ns
ectory in vacuo of the M-residue structured
:::nain of barley serine protease inhibitor. This
clded 2000 structures to be clustered. Because
- trajectory was solely to serve as a source of
;:uctures, the MD simulation is described only
·efly.The calculations were carried out using the
30MOS simulation package,? with a timestep of
~:sand weakly coupled to a temperature bath} at

K with a relaxation time of TT = 0.1 ps. The
HAKE algorithm was used to constrain bond
agths.9 Starting coordinates were taken from a
_:.Iblished,nuclear magnetic resonance (NMR) de-
~ved structure ofbarley serine protease inhibitor.lO
:me-averaged distance restraintsll and J-cou-
~lingrestraints12 were both imposed using a relax-
'"tion time of 20 ps. Experimental distance re-
~aints were taken from Poulsen13 and J-coupling
:estraints from published data.14 An initial 30 ps of
Smulation were used to equilibrate the system
dore the 1 n~ used for analysis.

JOURNAL OF COMPUTATIONAL CHEMISTRY 1333



TORDA AND VAN GUNSTEREN

could also add to the number of iterations needed
for convergence. The use of a graph definition of
cluster centroid has an important side effect. If one
were to use a center of mass approach to calculat-
ing cluster centroid, the exact distance to an outlier
determines the degree to which the cluster cen-
troid is skewed. With the graph definition, it only
matters that a point is of high eccentricity, not
exactly how high.

SINGLE LINKAGE ALGORITHM

The second clustering algorithm applied to the
data was based on the single linkage method.1s In
this procedure, the entire data set is considered as
a weighted undirected graph with the configura-
tions as vertices and the elements of the similarity
matrix as weighted edges. Kruskal's algorithm16 is
then used to find a minimal spannirlg tree. At each
stage, each connected sub graph is a potentially
interesting cluster.
This can be understood by considering the sim-

ple example shown in Figure 3. This shows a set of
points scattered in only one dimension and with
the distance between every pair of points (config-
urations) known. The distances are first sorted and
then considered, in turn, starting from the shortest
distance. The top line of Figure 3 shows such a set
of points with no initial clusters. In the first step

•• • •• ••

o·
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•
• ••

1 bc[G>
•• ••

1c~

~••
ld~

~~
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~· ~
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FIGURE 3. The single linkage clustering algorithm
applied to a set of one-dimensional points.
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(a), the first distance is considered, two points a:
joined, and the first cluster of only two configur-
tions is formed. In step (b), the next distance _
considered, adding a third point to the first clus
In step (c), the next shortest distance joins h
previously unclustered points, forming a new ch.:~
ter. In step (d), a third cluster is formed and all ::
points are members of some cluster. This se.
however, does not constitute a minimal spanni:-_
tree, so the algorithm is not finished. In steps "
and (f), there is a merging of clusters until all fo'.-,

points form a single grouping.
The algorithm has several attractive aspe~

First, it is intuitively appealing to form clusters .
joining the most closely related structures, regarc.-
less of when they occur in a trajectory. Second, tT.-
progress of the algorithm is readily monitored .. .:,
each step, one can count and plot the number
clusters formed and the number of structures clus-
tered as a function of distance. If there is a sudde.-
change in the number of clusters as the distance
increases, it suggests a natural structure in the
data. Finally, if one is willing to discard outlyin=
points, there is no need to continue until all point5
are clustered.

Results

To compare clustering algorithms, it is wortt
trying more than one kind of data set. Ideally
there should be one set in which configurations
fall into clear and natural clusters. Any algorithrr.
should work with this data. At the same time, it is
useful to have a data set with less structure. One
would like to know if an algorithm has a tendency
to produce midleading clusters where they are no:
physically justified. By choosing subsets of atoms
from the barley serine protease inhibitor simula-
tion, we attempted to generate two such data sets.
To this end, we first selected set (a): all backbone
heavy atoms (carbonyl carbon, amide nitrogen.
and ca) from residues 46-51 and 60-64. These
atoms form two strands of a four-stranded beta
sheet,17 and an examination of the NMR distance
information13 suggested the presence of distinct
conformational states. For the data set with less
structure, set Cb), we simply took the backbone
heavy atoms from all 64 residues of the protein..
Although individual regions may hop between
conformational substates, the combination of al
such transitions in different parts of the molecule
will tend to distribute the conformations more
evenly through conformational space.
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The justification for the atom selections can be
:.eenby considering the distribution of similarities
:€tween configurations. There are Ne= 2000 tra-
ectory snapshots and thus 1,999,000 (Ne(Ne-
J/2) unique nonzero entries in the similarity ma-
::ix for either atom subset. The histograms in Fig-
.He 4 show the distribution of the similarities. In
:"'-le upper panel (a), the distribution is plotted for
~tomset (a), the small section from the beta strands.
-:nemost common difference between structures is
about 0.8 A; but, more importantly, there is a
distinct asymmetry to the plot. This is in contrast
:0 the lower panel, which shows the same distribu-
jon when all backbone atoms are considered. The
most common difference between structures is 1.5
..\, but the distribution is symmetric about the
median. This reflects the relatively unstructured
uniform distribution of configurations in the high-
imensional space.

APPLICATION OF THE DIVISIVE
HIERARCHICAL CLUSTERING ALGORITHM

When run to its conclusion, the result of the
hierarchical clustering algorithm is to spread the
trajectory across a binary tree. At the root of the

tree is the initial cluster consisting of all configura-
tions. Going down, in a hierarchical fashion, are
child nodes where each is a subcluster. At the
leaves of the tree are individual configurations.
This way of viewing structures is different from
the usual picture of a trajectory as a function of
time. For Ne configurations, the tree will have Ne'
leaves, but because it is not a balanced binary tree,
only a lower limit can be specified for the number
of levels in the tree (log2(N». For the 2000 struc-
tures considered in each of the data sets here, this
means at least 11 levels. In practice, transition
states and'small energetic mimima lead to the
formation of many small clusters and a distinctly
unbalanced and weedy binary tree.
If one simply wanted to divide a trajectory's

conformational space, the binary tree could be
taken as a final result, but this would not be very
informative. More usefully, one can begin to look
for relatively populated conformational states.
These should be collections of structures confined
to small conformational volumes. With the binary
tree representation, such clusters are easily located
by a recursive traversal of the tree, starting from
the root and selecting each node farthest from the

300000

200000 ~ 1IIIIIn (a)>, uc:Cl>::lc:;~ 100000

300000

3.01.0
o
0.0

200000 ~ I 111111I....,(b)>, uc:Cl>::lc:;~ 100000

2.0o
similarity (A)

FIGURE 4. Histograms of interconfiguration similarities calculated from eq. (1) applied to 2000 barley serine protease
MD configurations. (a) The distribution of distances between configurations based on the subset of backbone atoms
from the two strands of beta sheet. (b) The distribution of similarities based on all backbone atoms.
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TABLE I. _
Clusters of Diameter Less than 0.55 A with
10 or More Members from Atom Set (a).

root with a rmrumum number of members and
with a diameter less than some arbitrary size.
Selecting the node farthest from the root means
that a node is not selected if one of its children
meets the selection criteria.
This process was first applied to atom set (a),

the two backbone fragments from the beta sheet of
barley serine protease. Figure 4a shows that the
mosto common interconfiguration distance is about
0.8 A, so true clusters should be of a smaller
diameter than that. To search for important narrow
energetic wells, one can then pick a small maxi-
mum cluster diameter of, for example, 0.55A and
only those clusters with 10 or more members. This
leads to 13 clusters, as summarized in Table 1.
Although this group of clusters accounts for only
138 of the original 2000 structures, the selection
criteria ensure that they are representative of pop-
ulated energetic minima. The table also shows
another important property of the clusters. This is
the time, within the original trajectory, spanned by
each cluster. The whole trajectory spans 1000 ps,
and the timespan of a cluster is calculated by
subtracting the time of the first from the last clus-
ter member. This is of interest because structures
close to each other in sequence will tend to be
structurally similar. If the members of a cluster
cover a significant amount of time, it suggests that
they are true recurring conformations.
In the case of atom set (a), the success of the

algorithm can be roughly gauged from simple
plots of the structures. Plotting the centroid and

Time spanned
Diameter (A) (ps)

FIGURE 5. Example clusters formed from atom set (a)
using the divisive algorithm. Each panel shows the
centroid and two extrema from one cluster. Each
individual structure consists of two strands of backbone
heavy atoms. All structures in all panels were fitted to the
centroid of the upper right cluster, based on the shown
subset of atoms.

the two extrema of a cluster gives a good indica-
tion of its spread while presenting a fairly clear
picture. For example, Figure 5 shows the first fo
clusters from Table 1. Picking any of the other
clusters gives a similar picture. The structures in
each panel were all fitted to the centroid of the
first cluster of Table I and are all shown in the
same orientation within their box. The four clus-
ters shown all have the expected internal similarity
but differ from each other in aspects like the orien-
tation of one end of one of the beta strands or the
backbone angles in another region.
The divisive algorithm was then applied to atom

set (b) (all heavy backbone atoms). The entire set
of conformations spans 3.47A, and Figure 4 show
that the most common interconfiguration distance
is near 1.5 A. Again, to search for low-energy
(highly populated) recurring conformations, one
might search for clusters of diameter less than 1.2
A with more than 10 members. This leads to 10
clusters described in Table IT.There are two main

726
581
843
933
498
469
761
611
612
782
720
741
682

0.51
0.52
0.53
0.48
0.50
0.53
0.54
0.51
0.54
0.52
0.54
0.53
0.51

Number
Cluster

members

0

12
1

11
2

10
3

10
4

10
5

11
6

10
7

11
8

10
9

10
10

11
11

11
12

11

1336 VOL. 15, NO. 12

--..-~



BlE 11. _
_ wsters of Diameter Less Than 1.2 A with
or More Members from Atom Set (b).

iifferences when compared to the data in Table 1.
:irst, to locate a reasonable number of clusters
'vith at least 10 members, one has to use a cluster
iiameter cutoff of about 1.2 A rather than 0.55 A,
as for the previous atom set. Whether one regards
:his spread of structures as structurally similar is a
matter of arbitrary judgment. Second, the last col-
umn of Table II shows that four of the clusters
consist almost entirely of sequential structures.

Number
vluster members Diameter (A)

o 12 1.19
1 10 1.18
2 10 1.14
3 11 1.15
4 11 1.08
5 11 1.12
6 10 1.10
7 10 1.15
8 11 1.15
9 10 1.15

Time spanned
(ps)

789
244
5

842
357
7

221
642
6
5

CLUSTER ANALYSIS I

These clusters are simply reflecting time proximi,:.-
of structures rather than real recurriJ1g conforma-
tions. Although it is not sho""n in the table, c.:.
ters 4 and 6 have more than nine members ,.-
are also sequential in the original trajectory.

APPLICATION OF THE SINGLE Lr\'K--\.GE
CLUSTERING ALGORITHM

In contrast to the divisive approach, ,,,-hich COll-
siders the distance from each configuration to a
cluster centroid, the single linkage algorithm is
based on the shortest distance between any pair 0:
structures. As described earlier, the progress of the
algorithm can be monitored at each step by plot-
ting the number of clusters that have been formed.
and the number of structures that have joined an
existing cluster. These plots are shown in Figure 6
for both atom sets. The left-hand panels show the
number of clusters as the range of interconfigura-
tion distances increases, and the right-hand panel
show the number of structures which have been
clustered. Initially, when few configurations ha,-e
joined a cluster, additional distances will often
lead to the formation of a new, but smaller cluster.
For atom set Ca),the number of clusters continues
to rise until 0.27 A, when 191 clusters have been

500

400~ 300

<1l'iii::l13 200

1000400~ 300

<1l'iii::l13 200

1000

0.0

(a)

(b)

0.2 0.4 0.6

distance (A)

0.0 0.2 0.4 0.6

distance (A)

2000

1500

!!l

21000
(')

C-
mCIl

500

o

1500

!!l

21000
(')

C-
mCIl

500

o
0.8

FIGURE 6. Applicationof the single linkage algorithm.The upper panels are for data set (a), the lowerpanels for data
set (b). Leftpanels show the number of clusters formed as the distance between structures increases. Rightpanels
show the number of configurations clustered up to that point in the algorithm.
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formed, and then starts to fall as the number of
cluster merge operations exceeds the number of
cluster formation operations. For atom set Cb),the
corresponding point occurs at 0.58 A after 409
clusters have been formed.
To attempt to extract useful information from

the single linkage algorithm, one must look at a
plot like Figure 6, pick a cutoff distance, and
consider the clusters formed at that point. For
example, with atom set Ca),a cutoff distance of
0.30A results in 160clusters. The right-hand panel
of Figure 6 shows that 924 of 2000 structures have
joined clusters at this point. Applying this cutoff
leads to one cluster with 450 members, one of 21
members, and 158 clusters of 6 or less members.
All of the tiny clusters consist of structures which
are sequential in the original trajectory, and most
have only two members. Clearly this is not a
satisfactory result. In case the problem is that clus-
ter merging has removed most of the information,
one could look at 0.25A, where there are also 160
clusters. This leads to one cluster of 31 members,
one of 28, and 158 clusters of 6 or less members.
Later in the algorithm's progress, when more
structures have been included, a cutoff of 0.34 A
results in 1646structures in 100clusters. This leads
to one cluster of 1274members, one of 107 mem-
bers, and 98 clusters of 4 or less members. Apply-
ing the single linkage algorithm to atom set Cb)
results in exactly the same kind of disappointing
behavior. Typically one or two large clusters are
formed with a plethora of tiny clusters usually
consisting of two sequential configurations.

RUNNING TIME OF ALGORITHMS

Aside from judging the results of each algo-
rithm, one can also assess their running time. The
hierarchical divisive method is bounded by OCN/),
where Ns is the number of structures to be clus-
tered. The running time for the single linkage
method is the running time for Kruskal's mini-
mum spanning tree algorithm.16 This is OCelog e),
where e is the number of edges in th'e graph. In
our case, the number of edges is CN/CNs2 - 1)/2,
so the algorithm is bounded by OCN/ log Nc2).
Although algorithms exist which will find a mini-
mum spanning tree with OCN/) running time,
these do not necessarily give minimum spanning
trees of subgraphs at each step. In other words,
they do not provide clusters at each stage of the
calculation.

1338

In practice, these running times are not critic:.
The time-consuming step is the calculation of =-
initial similarity matrix. Before two configuratio::-
can be compared using eq. Cl),one needs a ma
of internal distances for each configuration. TI-_
operation is OCN/), where Na2 is the number
atoms considered in each conformation. The co::--
parison of these matrices to generate the fir.-
similarity matrix requires quadratic time with ~::-
spect to the number of structures. Although '--
final result is bounded by OCN/ Na2), this does
account for a potential memory problem.
A single distance matrix has CN/CN/ - 1)) -

entries. If one has, for example, 100 atoms, th
results in 4950 entries. With 2000 structures an-
using 4-byte floating-point arithmetic, storing -
the distance matrices would require just under '"
Mb of memory. This means that for realistic size--
calculations, the calculation is often going to b::
bound by input/output operations. The only reh
is provided by the fact that the similarity matr_
need only be calculated once for a specified set
atoms in a particular trajectory.
In contrast, the second step of clustering, appl: -

ing an algorithm such as the hierarchical divisi"-=
method or single linkage method, can be' co[;-
ducted entirely in memory and is independent
the original number of atoms. Using the data here
as an example, we began with 2000 structures an-
a similarity matrix of 1,999,000entries. Using the
same machine assumptions as before, this require::
8 Mb of memory. Of course, these figures are
somewhat arbitrary and performance depends 0::-

available machines and the size of trajectories.

Discussion

The clearest result from these calculations is
that the hierarchical divisive algorithm seems to
produce useful, structurally significant results, bm
the single linkage algorithm produces nothing o~
value. Although this is surprising considering the
ideal picture presented in Figure 3, the problem is
that the points in a well-sampled trajectory do no-
have such a clear structure. This can be seen b--
considering the exaggerated situation shown ir.
Figure 7. There are clearly two clusters presem
which should be automatically identified. Unfortu-
nately, a line of closely spaced, less interestinc-
points joins the two clusters. In the case of an
trajectory, this might represent two conformationai
states joined by a transition pathway. The single

VOL. 15, NO. 12
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FIGURE 7. Distribution of points not suited to the single
inkage algorithm.

. kage algorithm fails because it is based on the
shortest distance between points. In this case, the
diagram is constructed so that the most closely
spaced points are in the transition region, and
attempting to cluster this data would lead to a
single cluster forming near the center and expand-
ing to encompass the two interesting clusters.
Although the hierarchical divisive method pro-

duced apparently satisfactory results, it may be
potentially misleading. One can imagine a set of
points distributed uniformly on a regular grid with
no natural clustering. The divisive method will
take such data and simply carve it into even pieces,
producing meaningless clusters. To some extent,
this is what happens when the method is applied
to atom set (b). If a trajectory's configurations are
evenly distributed across conformational space,
then the divisive algorithm will tend to produce
no more then time slices, as seen in the last col-
umn of Table n.
This behavior could be seen as a weakness of

the divisive algorithm, but it really reflects the
nature of the data. Atom set (a) was chosen be-
cause we expected the small set of atoms to adopt
a relatively small set of conformations. When con-
sidering the whole backbone, however [atom set
Cb)},the difference between any pair of structures
will rarely reflect a single conformational property.
Instead, it will reflect changes in many simultane-
ous and partly independent regions of the system.
It is of some interest to compare our results

with the approaches of previous workers. Karpen
et a1.4 took 15,000 structures spanning 2.2 ns and
divided them into six clusters. In this work, no
attempt was made to force all structures into a
small number of clusters. Instead, we discussed
only what we defined to be interesting clusters,
even when they accounted for only a small frac-
tion of the structures. The reason for this is shown
in Figure 8, which shows a set of configurations
scattered over a simplified one-dimensional en-
ergy surface. There are two populated energetic
minima which should be identified as clusters as
well as a number of structures occupying high-en-

JOURNAL OF COMPUTATIONAL CHEMISTRY

CLUSTER ANALYSIS IN MD

FIGURE 8. Distribution of structures over a simple
energy surface .

ergy states. If the trajectory is sampled frequently
enough, these conformers should spread them-
selves according to a Boltzmann distribution over
the energy surface. This will include a number of
structures in unlikely high-energy states. To obtain
the most structurally important conformers, these
outlying points should probably be ignored. Our
means of selecting clusters tended to pick out
configurations sitting in the bottom of energetic
wells, whereas the approach of Karpen et a1.4
would tend to include even the high-energy struc-
tures. The fuzzy clustering approach of Gordon
and Somorjai5 would give these structures fuzzy
membership of more than one cluster. The obvious
way to sidestep this question would be to energy
minimize all structures before cluster analysis and
thus push each configuration toward the nearest
energetic minimum.
As computers become faster, more data are pro-

duced and the need for data reduction becomes
clearer. Already, trajectory simulations routinely
generate 103 or 104 snapshots, and even NMR
structure calculations may produce collections of
102 configurations. Cluster analysis is obviously
one way to condense the structural information,
albeit at the expense of dynamic properties. The
only caveat is that not all algorithms are useful
and, when applied to the wrong data, the results
can be misleading.

Note Added in Proof Since submitting tIlls arti-
cle, similar work,18 in press, has been brought to
our attention addressing almost identical issues. It
is the intention of all parties to extend the work
with a comparison of clustering algorithms and
common data sets.
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