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Abstract 

A computer algorithm is presented for calculating the 
part of the van der Waals surface of a molecule that is 
accessible to solvent. The solvent molecule is modeled 
by a sphere. This sphere is, in effect, rolled over the 
molecule to generate a smooth outer-surface contour. 
This surface contour is made up of pieces of spheres 
and tort that join at circular arcs. The spheres, tort and 
arcs are defined by analytical expressions in terms of 
the atomic coordinates, van der Waals radii and the 
probe radius. The area of each surface piece may be 
calculated analytically and the surface may be dis- 
played on either vector or raster computer-graphics 
systems. These methods are useful for studying the 
structure and interactions of proteins and nucleic 
acids. 

Introduction 

In order to study the structure and function of 
proteins and nucleic acids, it is desirable to define 
precisely the outer surface of a macromolecule. It is 
this part of the molecule that binds ligands and other 
macromolecules. F'or small molecules the van der 
Waals surface gives a good representation of the outer 
surface and overall shape. But, for large molecules, 
most of the van der Waals surface is buried in the 
interior. Some other method is required to define the 
outer surface of a macromolecule. 

A suitable definition has been presented by 
Richards (1977). This molecular surface consists of two 
parts: the contact surface and the reentrant surface. 
The contact surface is that part of the van der Waals 
surface of the atoms that is accessible to a probe 
sphere representing a solvent molecule. The reentrant 
surface comes from the inward-facing surface of the 
probe sphere when it is simultaneously in contact with 
more than one atom. Richards, however, has not 
presented a method for calculating this surface. 

This surface definition is an improvement over the 
earlier solvent-accessible surface of Lee & Richards 
(1971), which was displaced outward from the true 
surface of the molecule by a distance equal to the 
probe radius. This earlier surface definition has been 

implemented by sev.,,ral computer algorithms [Lee & 
Richards, 1971: Richmond & Rici~ards, 1978; Alden & 
Kim, 1979). Thc,:: v~vo surfaces are compared to each 
other and to the van der Waals surface in Fig. I. 

There have been several attempts to implement 
Richards's (1977) definition. F'inney (1978) has cal- 
culated molecular area, where the outer surface of the 
protein is represented by a polyhedron with flat faces. 
roughly approximating Richards's surface. Greer & 
Bush (1978) have developed an algorithm where a 
rectangular grid of probe spheres is dropped on one 
face of a protein. Points selected fi'om the bottoms of 
these spheres approximate the surface of that face of 
the protein. 

The author has presented an algorithm which 
places dots over the solvent-accessible molecular sur- 
face (Connolly, 1981o, b). in this method, a probe 
sphere is placed tangent to each atom, each pair of 
neighboring atoms and each triple of neighboring 
atoms. When the probe is free from collisions with 
other atoms, points lying on the inward-facing surface 
of the probe sphere are chosen to become part of the 
molecular surface. The probe is moved around each 
atom and pair of atoms in angular increments, so this 
is a numerical and not an analytical algorithm The 
dot surface numerical algorithm is described in more 
detail in Appendix It, and its scientitic applications are 
discussed elsewhere {Connolly, 1983a). A dot surface 
for insulin (Dodson, Dodson, Hodgkin & Reynolds, 
1979) is shown in Fig. 2. 

An analytical method for calculating Richards's 
molecular surface is presented in detail below. The 
output of this computer algorithm consists of a set of 
curved regions of spheres and tort, joined together at 
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Fig. 1. Surface comparison. (a) van der Waals surface. {b) Lee & 
Richards's (1971) solvent-accessible surface. (c) Richards's 11977) 
molecular surface. 
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Fig. 2. Stereo pair of insulin dot surface. Amino-acid residues are labeled at or-carbon positions. 

(a) 

(b) 

Fig. 3. Analytical molecular surface of insulin. Two stereo pairs. (a) Vector graphics system representation. Close-up of surface, with same 
viewpoint as Fig. 2. Each face is drawn as concentric curved polygons. Green: contact surface. Red: reentrant surface. (b) Raster graphics 
system representation. Green: convex surface. Red: saddle-shaped surface. Blue: concave surface. 
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circular arcs. Two applications of this analytically 
defined surface are presented. The first application 
shows how molecular areas may be computed, and the 
second shows how the surface may be visualized on a 
vector computer  graphics system. 

S u r f a c e  c r e a t i o n  

The rolling of a probe sphere over a molecule is best 
understood in terms of translat ional  degrees of free- 
dom. If the probe is not in contact with the molecule, it 
will have three degrees of freedom. It loses one degree 
of freedom for each atom that it touches. There are 
then three cases for the number  of atoms that a probe 
sphere may simultaneously touch (Table 1). 

A differently shaped piece of surface is generated for 
each of these three cases (Fig. 3). Each piece is defined 
by the sphere or torus it lies on and a boundary  
contour. Each sphere is defined by a center and a radius. 
Each torus is defined by a center, two radii and an 
axial vector. The boundary  of each piece of surface is 
defined by a set of circular arcs, each arc being defined 
by its center, radius, plane and end points. 

These pieces of surface form a connected network 
covering the molecule. Because this network is analo- 
gous to a polyhedron, except for the fact that it is 
curved, we call each piece of surface a face. The faces 
are joined together at common boundary  arcs, some- 
times referred to as edges. The arcs meet at points 
called vertices. The join between two faces is smooth, 
in the sense that there is a well-defined tangent plane 
at each point of the arc jo ining the faces. This is in 
contrast to the van der Waals surface of a molecule, 
where there are sharp crevices where atoms intersect. 

The equations defining the surface are given in 
Table 2 and the data structure of the computer  repre- 
sentation of the surface is diagrammed in Fig. 4. Below, 
I discuss the details of the computer  algorithm. The 
derivations of the equations are presented in Appen- 
dix I. 

The basic idea of the computer  algori thm is to 
bootstrap up from probe-sphere positions having no 
translational degrees of freedom. These discrete po- 
sitions form the starting and stopping points of the 
trajectories of the probe when it has one degree of 
freedom. These trajectories, in turn, form the border of 
the rolling of a probe with two degrees of freedom. 

Torus construction 

The construction of concave and saddle faces re- 
quires that a torus be calculated for each pair of 
neighboring atoms, i and j. Two atoms are defined to 
be neighbors if the distance between their atom centers 
is less than the sum of their van der Waals radii plus 
the probe diameter. This ensures that they will be close 
enough to be bridged by a probe sphere. In order to 
avoid duplication of tori, i is chosen to be less than j. 

Table 1. Three shapes of  surface pieces 

Atoms 
touching 

probe 

1 

2 

3 

Degrees 
of 

freedom Surface S h a p e  Boundary 

2 Sphere Convex Cycles of 
convex arcs 

1 Torus S a d d l e  Convex and 
concave arcs 

0 Sphere Concave Three concave 
arcs  

Table 2. Surface definition equations 

Var iab le  n a m e  

A t o m i c  c o o r d i n a t e s  
van  der  Waa i s  radii  
P r o b e  rad ius  
i n t e r - a t o m i c  

distance 
Torus axis 

unit vector 
Torus center 

T o r u s  rad ius  

Base t r iangle  angle  
Base p lane  

normal vector 
Torus-basepoint 

unit vector 
Base point 

Probe height 
Probe position 
Vertex 
Contact circle 

center  
C o n t a c t  circle 

rad ius  
C o n t a c t  circle 

d i sp l acemen t  
C o n c a v e  arc  p lane  

n o r m a l  vec to r  
C o n c a v e  t r iangle  

angle  
C o n v e x  face angle  
Saddle  w r a p  angle  

Saddle  width  angle  
Euler  charac te r i s t i c  

Value 

ai, a t ,ak .... ( input)  
r i ,r  t , r  k ... .  ( input)  
rp ( input)  

d, t = la t - a,I 

Uit = (a t -- ai) /d  0 

t~j = ~(a~ + a t) + ½~a t - a~) 
x [(r  i + rp) 2 - - ( r  t + rp)2]/d~j 

rit = ~ [(ri + r t + 2rp) 2 - d 2] 1/2 
X [d 2 -  (r i -  r j) 2]1/2/d 0 

took = arccos(uo.u~k ) 

Uij k = Uij X Uik/sin O)ij k 

Utb ~ Uij k X Uij 

b i t  k : t i t  "k Utb[Uik.( t ik - -  tit) ] 
× (sin " ~ o k ) 1  

hitk = [(ri + rt,) 2 - Ibitk - ail2] 1 ~2 
Pijk = bijk ± hijkUitk 
%i = (riPOk + rpai)/(ri + rp) 

c o = (ritit + rpai)/(ri + rp) 

r, = ritri /(r  i + rp) 

dc = u,t.(c o - a,) 

nOk = (Pok -- t;t) X u o / r  o 

fl,, = arccos(ni jk .nik j )  

¢p,, = arccos(%k.n#t )  
when ni t  k × n i f l . i l i j  ~> 0 

= - arccos(nitk.n~t~) + 2re 
when ni t  k )< ni j l .Ui j  < 0 

O. = arctan(dc/rc) 
Z = 2 - number of cycles 

As the probe is rolled around atoms i and j, its 
center traces out a circle and its surface traces out the 
volume ofa  torus. The inward-facing arc that connects 
the two points of contact on the probe sphere sweeps 
out an area that is the inner face of the torus. It is 
neither convex nor concave, but saddle shaped (Fig. 5). 
We call the circle traced by the probe center the torus 
central circle, its center the torus center, its radius the 
torus radius, and the plane that it lies in the torus 
plane. The equations for the torus center and radius 
are given in Table 2. The line through the atom centers 
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is referred to as either the torus axis or the inter- 
atomic axis. The torus plane is perpendicular to the 
torus axis and bisects the torus. 

The expression for the torus radius given in Table 2 
contains two square roots. The quantity under the first 
square root will be negative if the two atoms are too 
far apart to be bridged by a probe sphere. The 
quantity under the second square root can be negative 
only in the situation where one atom is inside the 
other, a situation that is not chemically realistic. No 
torus is constructed in either of these situations. 

! A t o m  ) 
/ '  

\ . ,  

Fig. 4. Data structure of surface. The plus, minus and plus-minus 
signs mean convex, concave and saddle-shaped, respectively. The 
arrows indicate pointers. For example, an entry in the array of 
saddle faces contains the integer indices of elements in the convex- 
edge and concave-edge arrays. Entries in face, cycle and edge 
arrays consist solely of such pointers. Entries in circle, torus. 
vertex and probe arrays also contain real-valued geometric 
information, such as centers, radii and axes. The atom array 
contains only real-valued geometric information, i.e. atomic 
coordinates and van der Waals radii. 

Probe placement 
Along the torus central circle of atoms i and j, there 

may be points where a probe sphere may be placed so 
that it is also tangent to another atom. These other 
atoms must be mutual neighbors of atoms i and j, that 
is, each must be a neighbor of atom i and a neighbor of 
atom j. There are two possible probe placements for 
each such atom k, one on each side of the plane 
passing through the three atom centers. 

The midpoint of the two possible probe positions 
lies on the plane passing through the three atom 
centers and is called the base point, because it sits at 
the base of the altitudes to the probe centers (Fig. 6). 
The length of the altitude is called the probe height. 
Equations for the base point, probe height and probe 
positions are given in Table 2. If the three atoms are 
collinear, the denominator in the expression for the 
base point will be zero and there will be no probe 
placement. 

There are two cases where the quantity under the 
square root in the expression for the probe height will 
be negative and there will be no probe placement for 
atom k. The first case occurs when atom k is too far 
away for the probe to collide with it as the probe rolls 
around atoms i and j. If this happens with every 
mutual neighbor of atoms i and j, or if there are no 
mutual neighbors of atoms i and j, then this torus is 
called a free torus, because the probe is free to roll all 
the way around the pair of atoms, without collision. 
The second case occurs when atom k is located 
between atoms i and j so that the probe always 
experiences van der Waals overlap with atom k while 
rolling around atoms i and j. If this happens with any 
mutual neighbor of atoms i and j, then this torus is 
called a completely inaccessible or buried torus, 
because the entire inner surface of the torus is buried 
from contact with the solvent. The method for dis- 
tinguishing between these two cases is discussed in 
Appendix I. 

L j k  , 

) 
Fig. 5 Torus construction. The torus central circle iprobe trajectory) 

and inward-facing part of the torus surface are shown. The torus 
center and atom centers are labeled. 

Fig. 6. Probe placement. The center of a probe sphere placed in 
contact with three atoms and the inward-facing part of the probe- 
sphere surface are shown. The probe center, tori centers, atom 
centers and base poinl are labeled. 
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For the situation where the quantity under the 
square root is positive, there are two probe positions. 
At this point, even before we check for collision, we 
know that none of the three tori,/j, ik orjk, can be free, 
and so they are each marked as being non-free tori. 
This information is important, because before the 
probe placement step all tori are initialized as being 
free, while, after this step is completed, all tori that 
remain marked free are given a continuous loop of 
saddle surface. 

Each of the two probe positions must be checked for 
van der Waals overlap or collision with mutual 
neighbors of atoms i,j and k. The probe sphere and an 
atom collide if the separation of their centers is less 
than the sum of their radii. 

For each probe placement that survives collision 
checks with neighboring atoms, a concave face is 
generated. The equations for the vertices of this 
spherical triangle are given in Table 2. The boundary 
arcs are parts of great circles on the probe sphere 
connecting these vertices. A great circle is a circle of 
maximum diameter lying on a sphere, so that the circle 
and sphere centers coincide. 

Each of the three edges of the triangle bridges the 
van der Waals surfaces of a pair of atoms (/j, jk or ik) 
and each edge is appended to a list for the torus 
between that pair of atoms. This facilitates the re- 
trieval of edges at the next stage, when saddle faces are 
constructed by connecting adjacent pairs of concave 
edges belonging to the same torus. 

For later purposes of defining saddle and convex 
faces, it is useful to assign an orientation to each edge. 
An edge orientation says which vertex is the starting 
vertex and which vertex is the ending vertex of the arc. 
For each concave face, the three concave edges are 
oriented so that the face appears counter-clockwise 
when viewed from the probe-sphere center. 

Each concave face is associated with three tori. 
There is no need to create the face three times, once 
each while considering a probe rolling around each of 
the three tori. Therefore, for the torus between atoms i 
and j, a mutual neighbor k is considered for probe 
placement only if i < j  < k. However, it is still necessary 
to consider every mutual neighboring atom k for the 
check that it may render the entire torus inaccessible. 

It is unusual for a single mutual neighbor to block 
completely a probe from simultaneously touching 
atoms i and j at any point around the inter-atomic 
axis. The more common situation is where several 
neighboring atoms collectively bury the torus. This 
situation is recognized by the fact that after the probe 
placement part of the algorithm is finished, some non- 
free tori will not be marked as having been buried by a 
single atom, but will, nonetheless, have empty edge 
lists. Since concave arcs are added to the edge list of a 
torus not only when that particular torus is being 
considered for probe placement, but also when the 

probe is being placed around another torus where the 
two tori share an atom, then it is not possible to 
recognize the situation where a torus has an empty 
edge list until all tori about all pairs of atoms have 
been considered for probe placement. 

Saddle faces 
After all the concave edges have been generated and 

each assigned to the appropriate torus, each torus is 
examined to create saddle faces. Buried tori generate 
no surface. Free tori are considered as a special case. 
Their saddle faces have no concave edges, and their 
convex edges are complete contact circles (defined 
below). 

For tori partially accessible to solvent, one or more 
saddle-shaped rectangles are formed. The concave 
edges are in the torus edge list in order of creation, but, 
for the purpose of forming saddle faces, they trust be 
sorted into a new list so that this new list is in 
clockwise order when viewed along the torus axis 
from atom i to atom j. When two concave arcs are 
adjacent in space, and so may border the same saddle 
face, they are in adjacent elements in this new list. 
Whether an edge is paired with the edge before or the 
edge after is determined by the method of saddle-face 
orientation, described below. 

The vertices of the concave edges lie on the two 
circles of contact between the torus and the atoms. 
The center and radius of the contact circle on atom i 
are given in Table 2. The contact circle on atom j is 
defined by the same formulas, but with i and j 
interchanged. The circles are given an orientation so 
that when looking along the torus axis from atom i to 
atom j, the circle on atom i is counter-clockwise, and 
the circle on atom j is clockwise. 

A saddle face is constructed by choosing a pair of 
adjacent concave edges and the pair of convex arcs 
connecting them so that the orientation of the result- 

Fig. 7. Saddle-face construction. The accessible part of the inward- 
facing surface of the torus is made up of a disconnected set of 
saddle-shaped rectangles. The line represents the torus axis. 
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ing rectangle is clockwise when viewed from outside 
the molecule. The convex edges inherit the orientation 
of the circle they lie on. All concave edges are paired in 
this way to construct a disconnected set of saddle faces 
going around the torus axis (Fig. 7). Assigning orienta- 
tions is a bookkeeping device that ensures that the 
saddle faces created are the regions accessible to a 
probe sphere, and not the gaps that they alternate with 
about the torus axis. 

For each saddle face constructed, a pair of convex 
arcs is generated. Each convex arc is appended to the 
list of convex arcs for that atom. These convex arcs are 
used in the next step of convex-face generation. 

Convex faces 

Convex faces are generated for each partially or 
wholly accessible atom. Buried atoms generate no 
surface. Atoms whose entire surface is accessible are a 
special case. They have one convex face with no 
boundary. Both buried and completely accessible 
atoms have null edge lists, but they may be distin- 
guished by the fact that completely accessible atoms 
have no neighbors. For partially accessible atoms, 
which have one or more convex edges, convex faces 
are generated as follows. 

All the convex edges belonging to the edge list of the 
atom are grouped into cycles. An edge with no end 
points (a circle) forms a cycle by itself. Edges with end 
points form cycles where the second vertex of one edge 
is equal to the first vertex of the next edge, and so on, 
around the cycle, until the second vertex of the last 
edge of the cycle coincides with the first vertex of the 
first edge. Since the convex edges have an orientation, 
the cycles that result from linking them together also 
have an orientation. 

This orientation is used to define the interior of the 
cycle. ['he interior of a cycle is the part of the van der 
Waals surface of the atom that lies on the left-hand 
side of the edges as one travels around the cycle in the 
direction of its orientation. The exterior lies on the 
right-hand side. The interior of a cycle is in general 
solvent-accessible, except for the case where other 
cycles are present in the interior, making part of the 
interior of this cycle solvent-excluded. Each cycle 
appears counter-clockwise when viewed from above 
its interior. 

A convex face is defined by listing the cycles that 
form its boundary. So, once the cycles of an atom have 
been formed, it is necessary to partition the cycles into 
groups. All the cycles in a given group border a 
particular face. If two cycles border the same face, then 
they will lie in each other's interior. The first step in 
forming convex faces, then, is to compare every pair of 
cycles to determine whether the first lies in the interior 
of the second, and rice versa (Fig. 8j. 

We determine whether cycle A lies within the 
interior of cycle B as follows. Cycles do not intersect, 

so we need check only one point P of cycle A in order 
to determine whether the whole of A lies in the interior 
of B. We arbitrarily choose the first vertex of the first 
edge as our point P, unless cycle A consists of a single 
circle with no vertices, in which case we choose the 
center of the exterior of this circle as our point P. 

Stereographic projection of the sphere onto the 
plane (do Carmo, 1976) is used to determine whether 
the point P lies in the interior of cycle B. The point P is 
chosen as the north pole of the stereographic projec- 
tion, and the vertices of cycle B are projected onto the 
plane tangent to the south pole of the atom (Fig. 9). 
The projected vertices are connected by straight lines 
to form a polygon, and the polygon edges are given 
the same orientation as the convex arcs they come 
from. If the point P lies inside the cycle, the polygon 
will have a counter-clockwise orientation, just like the 
cycle itself. If the point P lies outside the cycle, the 
projection will reverse the orientation so that the 

Fig. 8. Cycles. The atom has two regions of solvent-accessible van der 
Waals surface, each bordered by two cycles. The interior of each 
face is also represented by cycles. After the convex edges on the 
atom are grouped to form four cycles, the cycles must be grouped 
to form two faces. 

Fig. 9. Stereographic projection. The vertices of a boundary cycle are 
projected onto a plane tangent to the atom and opposite the origin 
of the projeclion. 
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polygon has a clockwise orientation. The orientation 
of the polygon is determined by the sign of the sum of 
its exterior angles. The arcs of the cycle do not project 
onto straight lines, but this is irrelevant, because the 
only property of the polygon that we are concerned 
with is its orientation. 

There are two situations where stereographic pro- 
jection is not necessary. If cycle B contains fewer than 
three arcs, then its exterior is completely blocked by 
the one or two neighboring atoms that generated these 
arcs, and so all other cycles, including A, must lie in 
the interior of cycle B. The other situation occurs 
when cycles A and B each have a convex edge 
belonging to the same torus, in which case it is clear 
that each cycle must lie in the other's exterior. 

After every pair of cycles has been compared, and 
their relative interior/exterior relations stored, convex 
faces are formed. If two cycles border the same face, 
then each lies in the other's interior, but the converse is 
not necessarily true. In order for cycles A and B to 
border the same face, not only must they lie in each 
other's interior, but also every other cycle C that lies in 
the interior of cycles A and B must have both cycles A 
and B in its interior. 

In this manner, the solvent-accessible van der Waals 
surface of the atom is divided into faces, each bordered 
by zero or more cycles of one or more arcs. 

Sel f- intersect ing surfaces 

A saddle face intersects itself when the torus radius 
is less than the probe radius. It can also happen 
that two concave faces interpenetrate. These problems 
typically occur in deep grooves. Methods for dealing 
with these problems are being developed. 

Area measurement  

The area of each face of the surface may be measured 
once the surface has been calculated by the surface 
creation program. The output of the surface creation 
program is a list of convex, saddle-shaped and 
concave faces defined in terms of vertices, circular arcs, 
spheres and tori (Fig. 4), according to the equations 
given in Table 2. This output is used directly as input 
to the area measurement program. 

Different area computation methods are used for 
each of the three types of faces. All methods have in 
common the fact that areas are defined in terms of the 
radii and angles presented in Table 2. The equations 
for the areas are given in Table 3 and derived below. 

Concave face  

The area of a concave face may be calculated from 
its angles (Fig. 10), since it is a spherical triangle (do 
Carmo, 1976). 

A... =rt,  : 

Table 3. Molecular  areas 

Face 

Convex 

Saddle 

Concave 

Area 

A ,  = ~o.,[r~jr,(O., i + O~j) - rp2(sin 0~ + sin O~j)] 

Saddle face  

The area of a saddle face is calculated by integration 
(Fig. 11). The parts of the saddle surface on either side 
of the midline are integrated separately. 

The area of the surface of revolution is calculated by 
integrating a strip of width rp dO and length ~0sx, where 
0 ranges from 0 to  Osi , and x = ri~ - r p c o s  0. The area of 
the part of the saddle next to atom i is givep by 

Osi 
A~i = ~. qg~xrp dO = ¢p~rp(rijOsi - rpsin O~i). (2) 

0 

A similar term exists for the part of the saddle surface 
next to atom j, but with 0si replaced by 0~j. The 

Fig. 10. Angles at a vertex. Two saddle rectangles, one concave 
triangle and one convex region meet at each vertex. The sum of 
the angles is 2ft. 

\ r ~ rij 
I 

l 
cq hi 

Fig. 1 I. Saddle-face-area computation. The angle 0 varies between 0 
at the midline and 0~; at the contact circle on atom i. The part of 
the saddle face next to atom j (not diagrammed) is integrated 
separately, with the angle 0 varying between 0 and 0~. The 
distance of the element of area from the torus axis is denoted by x. 
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combined saddle surface area is then 

As = Asi + As~ 

=q)s[rijrp(Osi+Osj)-r2(sin Osi+Sin Osj)]. (3) 

Convex face 
The area of a convex face is calculated by applying 

the Gauss-Bonnet  theorem (do Carmo, 1976): 

2 (X- at') + 2 J" ke dl + .[ K dA = 2~z Z. (4) 
L" e 

The sum in the first term is over the vertices of the 
boundary and the sum in the second term is over the 
edges of the boundary of the face. This theorem from 
differential geometry expresses the Euler characteristic, 
X, in terms of point, line and area curvature. The Euler 
characteristic depends on the number of holes in the 
surface and is equal to 2 minus the number of cycles 
forming the boundary. 

The point curvature of the face is the sum of the 
exterior angles at the vertices. The exterior angle at a 
vertex is the angle between the two tangent vectors to 
the arcs and is equal to rr minus the interior angle av 
(Fig. 10). 

The line curvature of the face is the sum of the 
integral over each edge of the geodesic curvature. The 
geodesic curvature, ke, of edge e is constant along each 
arc, and equal to (1/re)sin 0si, where rc is the radius of 
the contact circle and 0si is the saddle-width angle of 
the saddle face s bordering this convex edge on atom i 
(derivation given in Appendix III). The length of the 
arc is rc~,  where q's is the angle by which the saddle 
face s wraps around the inter-atomic axis. When the 
geodesic curvature and arc length are multiplied to 
give the value of the line integral, the contact-circle- 
radius factors cancel and we are left with q0.,sin 0~i. 
Since each edge corresponds to a saddle face, we may 
change the summation index in the second term in (4) 
from e to s. 

Since a sphere has constant curvature, the area- 
curvature integral is equal to the Gaussian curvature 
times the convex-face area (A +). The Gaussian cur- 
vature is equal to the reciprocal of the square of the 
atom radius. Substitution of all the above information 
into (4) gives 

1 
~ (rr--~v) + ~ qassin Osi +r-{ A+ = s . (5) 

Solving for the area we get 

Two simple examples are considered. If the bound- 
ary of the convex face consists of a single circle, then 
the Euler characteristic is 1, the saddle wrap angle is 
2rr, and there are no vertices. The formula simplifies to 
A + = 2r~r~(1-sin 0si). If the convex face consists of an 

entire sphere, then the Euler characteristic is 2 and the 
other terms are zero, giving the familiar formula 
A+ =4rrr/2. 

A method for measuring the volume enclosed by the 
surface has been developed (Connolly, 1983c). 

Computer graphics 

The surface may be displayed on a vector computer- 
graphics system. This requires that the output of the 
surface generation program be processed by a sub- 
sequent program. Each face of the analytically-defined 
surface is converted into a set of concentric curved 
polygons (Fig. 3). The arcs of the polygons are drawn 
as a series of short vectors, since most vector graphics 
systems will draw only straight lines. 

The construction of concentric polygons is straight- 
forward for concave and saddle faces, but more 
complicated for convex faces. We consider each of 
these three cases. 

Concave face 
A point is chosen in the center of the concave 

triangle. This point is then connected to each of the 
three vertices by great circular arcs. Each of these 
three connecting arcs is subdivided by the same 
number of points. Corresponding triplets of sub- 
division points are connected by great circular arcs to 
form concentric triangles. The triangle corresponding to 
the boundary of the concave face is not drawn, to pre- 
vent overlapping drawing of concave and saddle faces. 

Saddle ]ace 
The concave pair of arcs of the saddle face are 

subdivided by equally spaced points. Pairs of corre- 
sponding points are connected by convex arcs that lie 
in planes perpendicular to the torus axis. This rectan- 
gular subdivision could be drawn as a grid, but instead 
it is represented by concentric curved rectangles. The 
largest rectangle has its concave sides along the 
concave boundary arcs, but its convex sides are one 
subdivision in from the boundary, to prevent overlap 
with convex faces. 

Convex face 
Convex faces have less-regular shapes than concave 

and saddle faces. Both the number of cycles forming 
the boundary and the number of edges per cycle are 
variable. Simple subdivision algorithms, such as those 
described above for concave and saddle faces, will not 
work. A more general method is needed. 

The basic idea in this more general method is to 
increment progressively the radii of atoms that neigh- 
bor a face in order to generate a series of shrinking 
contact areas. An atom neighbors a face if an edge of 
the face lies on the torus between the central atom and 
this neighbor. 
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The first step in this procedure is to gather all the 
atoms that neighbor the given face. Then a simplified 
version of the surface-creation algorithm is repeatedly 
applied to just this central atom and its neighbors. 
Before each application, the radii of neighboring 
atoms are incremented. 

The size of the radius increment depends on both 
the step number and the neighbor, according to the 
following initialization and iteration equations. 

e o = arctan(rc/dc),  r~, o = r~ (7) 

'~;n = g'n- I h- S / r  i (8) 

rj..= { [ d i j - ( r  i + %)cos e,] z +(r i  + rp)Zsin z e,,} t / 2 - r p .  

(9) 

The value of S must be specified to give the distance 
separating successive polygons. The radius of atom j 
at step n is denoted by rj.,. The angle ~,, is defined in 
Fig. 12. See Fig. 17 in Appendix I for rc/d c. 

As the contact area shrinks, some neighbors may no 
longer contribute edges, so the number of sides of the 
polygon may decrease. It is also possible that a cycle 
may split into two or more cycles. 

There are two conditions that signal when the 
contact area has gone to zero. One occurs when ~, > rt 
for some neighboring atom, which means that this 
neighboring atom has grown large enough to bury the 
central atom completely. The other event is the failure 
of an iteration to produce any convex edges, which 
means that the neighbors have grown large enough to 
bury collectively the central atom. 

A special check ensures that all the convex edges 
produced lie in the interior of the original face, rather 
than in some other region of the atom. This check 
occurs in the probe-placement part of the algorithm, 
where the contact point between the probe and central 
atom is determined to lie inside or outside the original 
convex face, by the method of stereographic projec- 
tion described above (Fig. 9). This point must lie in the 
interior of each cycle of the face, or else this probe 
position is discarded. 

/////, / 

~Q. /' 

a i dij - Iri+rp) cos  (n ~ aj 

Fig. 12. Neighbor-atom-radius increment. The radius of the central 
atom (left) is fixed, but the radius of the neighbor on the right is 
incremented by an amount chosen so that the spacing of convex 
edges on the central atom will be the same for each step. 

The arcs of the boundary cycles of the original face 
are drawn, in addition to the convex edges generated 
by the iterative procedure described above. 

This surface representation may be displayed on an 
Evans and Sutherland Multi Picture System by using 
the general-purpose display program G R A M P S  
(O'Donnell & Olson, 1981). 

A method for displaying an analytical molecular 
surface on a color raster terminal has been developed 
(Connolly, 1983b). This method does hidden-surface 
elimination and shading (Fig. 3). Scientific applica- 
tions of the vector and raster graphics methods, 
molecular-area and volume-measurement methods, 
and the dot surfaces are discussed by Connolly 
(1983a). 

I thank T. J. O'Donnell and A. J. Olson for the use 
of their program G R A M P S ,  the Brookhaven National 
Laboratory Protein Data Bank for X-ray coordinates 
(Bernstein et al., 1977), and the Helen Hay Whitney 
Foundation for a postdoctoral fellowship. 

A P P E N D I X  I 
Derivation of surface definition equations 

The simple equations in Table 2 are not derived. 

T o r u s  

Consider a probe sphere placed tangent to two 
atoms, i andj. The triangle with the probe center as its 
vertex and the inter-atomic axis as its base may be 
divided into two right triangles, with the right angles 
meeting at the torus center (Fig. 13). The torus center 
will be halfway between the two atom centers only if 
they have the same radius. 

Let the variable x denote the distance from the 
center of atom i to the torus center, so that ti~= ai 
+ xuii. The length of the other leg of the right triangle 
is the torus radius rij and the hypotenuse has length 
ri + %, so we have 

x 2 + r~ = ( r  i + rp) 2. (A 1) 

There is a similar equation for the other right triangle: 

(dij - x)  2 + r(~ = (rj + rp) 2. (A2) 

a i t i j  aj 
x ~ d i j - x  

Fig. 13. Torus center and radius. The torus center will be closer to 
the smaller a tom 
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These are two equations in two unknowns, x and r~j. 
Subtracting the second from the first and solving for x 
we get 

x = l d i j + ½ [ ( r i + r p ) 2 - ( r j W r v ) E ] / d i j .  (A3) 

Substituting this value for x into t js=ai+xujj  and 
rearranging terms we get 

t i s=  ½(ai + aft + ½(a s - ai) [(ri + rp) 2 - ( r  s + r,,)2 ]/d~. 
(A4) 

Substituting thc value for x given in (A3) into (A 1) and 
rearranging terms we get 

r ij = ½ [ (r i + r j + 2r  p) 2 --  -OJ/']211/2[-/]2t.-iJ - -  (ri - r j)2] l /2 /d i j  • 

(AS) 

Base  poin t  

The basc point for a probc sitting on atoms i , j  and k 
is located at the intersection of the three torus- 
bisecting planes and the base plane (Fig. 14). Let y 
dcnote thc distance from thc torus centcr t~i to the base 
point bijk, SO bij k = ti j  + YUtb. 

The vectors from t;i to t., and from tii to b~s k both 
project onto the same vector on the ik axis. This gives 
us  

Uik.( tik --  t i j  ) = Uik.(bij k --  t i j  ). ( A 6) 

The angle between Uik and bisk--t~j is equal to 
n/2--OJ~ik and the length of the second vector is y, so 
(A 6) may be written 

U i k . ( t i k  - -  tij  ) = y cos(n/2 - ( D i j k )  = y sin (.oij k. (A 7) 

Solving for y and substituting into bij  k = tij  ÷ YUtb we 
get 

bij k = ti j  + U t b [ U i k . ( t i k  - -  to.)]/sin (.Oij k. (A 8) 

P r o b e  height  

The right triangle between the center of atom i, the 
base point and the probe position (Fig. 15) has legs of 

al 

/ . ! 

/ 
aj ilk • k 

Fig. 14. Base point for probe positions. The center of a probe sphere 
touching the three atoms lies on a line perpendicular to the plane 
passing through the three atomic centers, and intersecting this 
plane at the base point bijk. 

length Ibiik -- ail and hij  k and the hypotenuse has length 
r~ + r v. This gives 

Jbijk -- aiJ 2 + hER = (ri + rp) 2. (A9) 

Solve for hij k" 

his k = [(ri + rp) 2 - Ibok -- ai[ 2] 1/2. (A 10) 

The probe height is imaginary in the case where the 
probe cannot be placed simultaneously tangent to all 
three atoms. This happens when the torus central 
circle does not intersect the sphere centered at atom k 
with radius r k + rp (locus of centers of probes tangent 
to atom k). This may occur either because the torus 
central circle lies entirely outside the sphere, or 
because it lies entirely inside the sphere. In the second 
case the torus will be completely buried by atom k, 
because any probe placed tangent to atoms i and j will 
overlap atom k. These two cases may be distinguished 
by considering the distance between the torus center 
and atom k. 

First we consider the special case where the center 
of atom k lies on the torus axis (Fig. 16). The circle will 
lie exactly on the sphere when 

[ t i j - - a k l = [ ( r k  + r v ) 2 - - r 2 ]  1/2 (All)  

When this distance ]t~j- akl is less than the quantity on 
the right, then the torus central circle will lie entirely 
within the sphere. When it is greater, it will lie entirely 
outside. 

"l 
/ / /  hijk 

ai bij k 

Fig. 15. Probe height above the base point. 

h~ rij 

//// 
/ ,,~t 

J 
/ ~.,~ 

/ 
/ /  

// / 

/ / / /  

V7 
Fig. 16. Calculation of the distance between the torus center and 

atom k when the torus central circle lies exactly on the sphere 
centered at atom k with radius rk + rp. 
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In the more general case, where the torus plane is 
not perpendicular to the line joining the torus center 
and atom k, (All)  is still relevant. Since we are 
assuming that the circle does not intersect the sphere, 
a slanted circle must be even closer to ak when it is 
entirely inside, or even farther from ak when it is 
entirely outside the sphere. Therefore, we may make 
the general statement that when the probe height is 
imaginary, then the torus is completely buried by 
atom k if and only if 

[lij-- akl < [(r~ + rp) 2 - r 2 ]  1/2 (A 12) 

Contact  circle 

The center and radius of the contact circle and the 
vertex coordinates may be determined from the ob- 
servation that the aicijvpi and aitijpijk triangles are 
similar (Fig. 17). 

A P P E N D I X  !1 
Numerical algorithm 

The analytical algorithm is an outgrowth of an earlier 
numerical algorithm, which is described in this Appen- 
dix. This numerical algorithm generates a set of points 
lying on the same surface as the analytical algorithm 
calculates, but the faces and their boundary arcs are 
not explicitly computed. The points lying on convex, 
saddle and concave faces are each generated in their 
own way. 

The points on convex faces are generated by placing 
a probe sphere tangent to a given atom at a finite 
number of positions. The positions are chosen along 
circles of latitude on the atom sphere. The spacing of 
the points along the latitudes and the spacing between 
the latitudes depends upon an input parameter. Each 
probe position is checked for van der Waals overlap 
with neighboring atoms. When there is no collision, 
the point of tangency between the probe and the atom 
is written to disk as a contact surface point. 

The points on the saddle faces are created by 
placing a probe sphere tangent to a given pair of 
atoms. The center of the probe sphere is placed at a 

Pijk 

,, T 

rij 

I 
I ! 

Fig. 17. Contact circle center and radius. The displacement of the 
contact circle from the atom center, d,., is a signed quantity, being 
negative when the contact circle is on the opposite side of atom i 
from atom j. 

finite number of positions along the torus central 
circle. Probe positions surviving collision checks with 
neighboring atoms generate surface points evenly 
spaced along the great circular arc on the probe 
sphere connecting the two points of contact. These arc 
points are written to disk as reentrant surface points. 

The points on the concave faces are created by 
placing a probe sphere tangent to triples of atoms, in 
the same manner as in the analytical method. But, 
instead of representing the concave spherical triangle 
by its boundary arcs and vertices, a set of points lying 
within the triangle is written to disk as reentrant 
surface points. The points are chosen from a fixed set 
of points that are spaced along circles of latitude on 
the probe sphere. 

The reentrant surface points are assigned to the 
atom whose van der Waals surface they are closest to. 
Each surface point, whether part of the contact or the 
reentrant surface, thus belongs to a particular atom. 
The display of these surface points on a vector 
graphics system having a dot-drawing mode is 
straightforward. This is in contrast to the situation for 
the analytical algorithm, where the more abstract 
representation must be converted by the concentric 
curved polygon program into a set of vectors. 

The numerical algorithm produces not only the 
coordinates of a surface point, but also an outward- 
pointing unit vector perpendicular to the surface at 
that point, and an approximate area associated with 
the point. 

A P P E N D I X  !I1 
Geodesic curvature of a circle on a sphere 

The geodesic curvature of a great circle is always zero. 
A small circle is a circle whose center does not 
necessarily coincide with the center of the sphere. The 
geodesic curvature of such a circle may be calculated 
by applying the Gauss-Bonnet  formula [(4)] to a 
spherical cap. A spherical cap is a region on a sphere 
bounded by a circle. The area of a spherical cap is 
given by Acap = 2grh, where r is the radius of the 
sphere and h is the height of the cap (Gellert, Kfistner, 
Hellwich & K~istner, 1975). This height may be ex- 
pressed in terms of our variables as r i -dc ,  where ri 
is the radius of atom i and dc is the displacement of 
the contact-circle center from the atom center. So 
Aca p : 2 r c r i ( r  i - -  d~). 

Applying (4) to this special case, we have 0 for the 
first term, because there are no vertices. The second 
term is the geodesic curvature times the circle circum- 
ference. The third term is the spherical-cap area times 
the Gaussian curvature (reciprocal of the atom-radius 
squared). The Euler characteristic of a spherical cap is 
I. Substituting this information into (4), we get 

k,,(2nr,) + 2rcri(r i - d~)/r2i = 2re. (A 13) 
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This equation may be solved for the geodesic cur- 
vature to give ke =dc/(rirc). Substitution of sin 0si = 
dc/r i gives ke=(1/rc)sin Osi. 
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