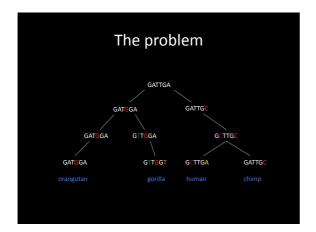
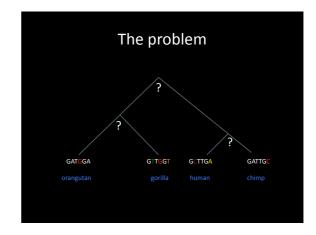
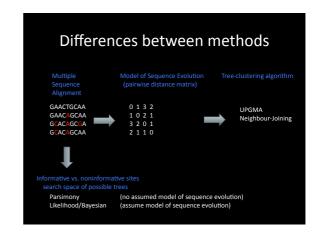
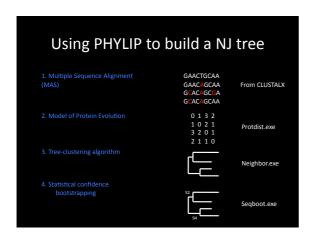
BIOL3004 PSE Elective

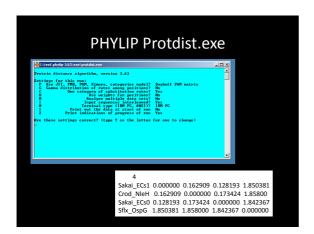

Phylogenetic Inference

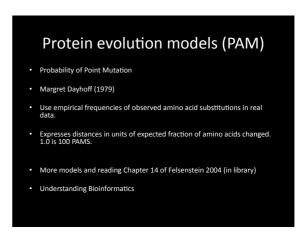

Steve Chenoweth 116 Goddard building s.chenoweth@uq.edu.au

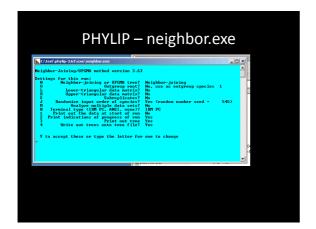
TRY TO EXPERIMENT!

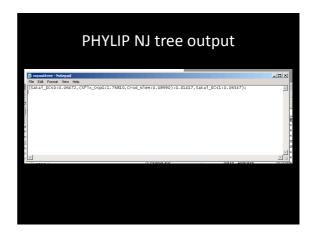

- Phylogenetics is a huge field rich in both methods and, for better or for worse, strong opinions.
- Historical arguments were particularly vicious where it perhaps matters the least: classifiation and taxonomy.
- Felsenstein's fourth great school of classification the:

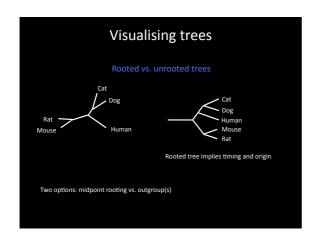

 "It-Doesn't-Matter-Very-Much School"
- In reality phylogenetic reconstruction applied in a wide range of fields

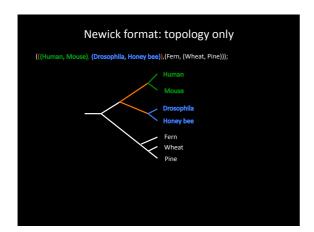


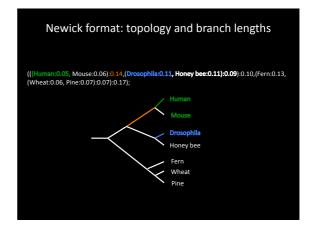

Methods 1. Distance Methods - UPGMA (assumes molecular clock) - Neighbour-joining (fast, relatively accurate) 2. Parsimony Methods - Slower, topology only 3. Likelihood Methods - Powerful BUT computationally demanding 4. Bayesian Methods - Powerful BUT computationally demanding

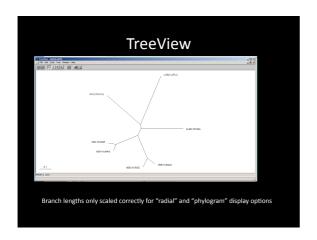





PHYLIP ISSUES • Phylip always outputs a file called outfile and sometimes an outtree from each program. This will overwrite and replace any previous files with the same name. • After running any phylip program, immediately rename the outfile (and outtree) files to something unique, and useful; eg mydata.dst, mydata.nei, mydatatree.prs, mydatatree.nei • These files are all text files, and you can read them using Wordpad or any other text editor. •The outtree files are Newick format you can open in Treeview.

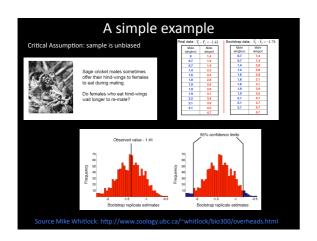


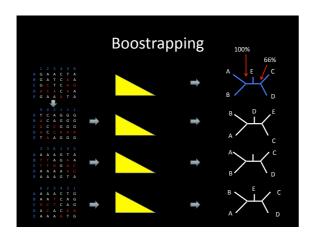


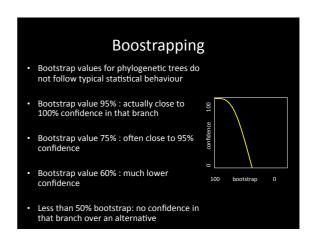


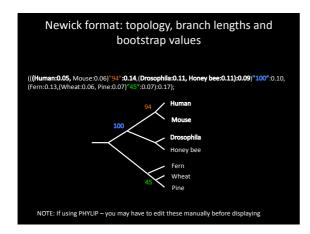
Tree file formats

- Not all evolutionary programs can draw trees and diagrams can't be transferred between programs.
- New Hampshire/Newick format is the format used for text description of trees and to allow easy movement between programs.




How reliable is my Tree?


- Now we have a tree (topology and branch lengths) we need to know how reliable it is.
- What follows concerns the reliability of the topology only (branching pattern) NOT the lengths of those branches.
- Likelihood can provide confidence intervals for the latter
- Use Bootstrapping (Efron 1979)



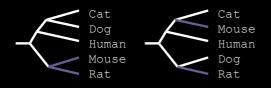
Boostrapping Phylogenies

- From the original multiple sequence alignment, "pseudoreplicate" multiple sequence alignments are created by randomly selecting columns.
- Statistically, these pseudoreplicates are similar, but not identical, to the original.
- For each pseudoreplicate, the tree is calculated.
- For each branch in the original tree, we count how many times the pseudoreplicate trees have the same branch.
- Note that we are repeating the complete analysis multiple times - this can be slow!

Bootstrapping in PHYLIP

- http://compbio.chemistry.uq.edu.au/ mediawiki/index.php/Phylogenetic_tree
- I can help in the workshops
- Easier in MEGA

Examining the alignment for unusual regions


- Expect "families" or clusters of sequences with similar patterns from closely related species. These are often visible in the CLUSTAL alignment.
- However, some sequences may appear part of one family in one region of the alignment, and part of another in another part.
- To test the difference between regions, prepare smaller alignments containing the separate regions, and construct the distance tree with bootstrap values for each.

Some Nasty Stuff

- Homoplasy
 - Recurrent mutation back to ancestral state
- Long Branch Attraction "The Felsenstein Zone"
 - Check levels of divergence, sanity checks
- Among-site evolutionary rate variation
 - Correct distances using gamma distribution

Parsimony analysis

- The principle of parsimony is to find the tree which has the smallest number of changes required to get the multiple sequence alignment.
- Eg a position where cat, dog and human have Glycine and mouse and rat have Threonine

Parsimony in Phylip

- You need an output file from clustal for phylip input (.phy)
- The phylip program is called protpars (dnapars)
- The program calculates the parsimony score for a given tree, then tries other trees and sees if the score is improved.
- Parsimony (particularly for many sequences) is typically slower than distance methods.

Protein parsimony algorithm, version 3.6

Setting for this run:

U Search for best tree? Yes

J Randomize input order of sequences? No. Use input order

O Outgroup root? No, use as outgroup

T Use Threshold dassimony? No, use ordinary par

Other Tools

- Mega4 Nei and Kumar menu driven, all in one installed on ILC computers http://www.megasoftware.net
- TREE-PUZZLE free "quartet puzzling" by maximum likelihood
- RAXxL http://icwww.epfl.ch/~stamatak/index-Dateien/Page443.htm
- Comprehensive list at Joe Felsenstein's page: http://evolution.genetics.washington.edu/phylip/software.html
- Inferring Phylogenies 2004. Joe Felsenstein an excellent reference