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An exact calculation of the hypertine interaction tensor between a ligand nucleus 
andf electrons was carried out for: an f 7 ion, anf I3 ion in a crystal field environment 
of octahedral symmetry for the two twofold degenerate states, and for an f I3 and an 

f' ion in a crystal field environment with a tetragonal component. Comparison of the 
calculated hyperfine tensor to the tensor calculated for a “point magnetic dipole” 
show small but significant differences for distances > 0.2 nm. The deviations produce 
apseudoisotropic term which for nearest neighbors is small in magnitude (-6%) to that 
found experimentally but for next nearest neighbors is equal in magnitude to that 
reported experimentally. It was shown that errors of 1 to 2 pm in position coordinates 
are likely to result whenever hypertine interactions plus the “point-dipole” equa- 
tions are used to measure coordinates of nuclei relative to any lanthanide ion (except 
anf’ion). 

INTRODUCTION 

In ENDOR and EPR analyses of the hyperfme interaction between a lanthanide 
ion and a nearby ligand nucleus the results are generally expressed in terms of a 
spin Hamiltonian of the form 

X = /+B.g.S + 1.A.S - g,pNB.I, VI 
where pB and pN are the Bohr and nuclear magnetons, respectively, B is the mag- 
netic field vector, I is the nuclear spin operator in units of fi, and S is the fictitious 
spin operator in units of 6. The quantities g and A are, in principle, nonsymmetric 
tensors. Most lanthanide systems studied by ENDOR and EPR have a Kramer 
doublet for a ground state and these systems are considered to have a fictitious 
spin of l/2. In the special case of Gd3+ and ELF, which have thef’ configuration, 
S is taken to be 712. 

The largest part of the A tensor comes from the dipolar interaction between the 
nuclear spin and the spin and angular momentum of an electron in anf orbital 
centered on the lanthanide ion. It has been an “article of faith” in all analyses of 
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experimental hyperfine results involving lanthanides that the dipolar contribution 
to A can be calculated with high accuracy using the “point-dipole approximation.” 
1:n this approximation thefelectron is regarded as a point magnet with anisotropies 
in the magnetic moment represented by the g tensor. Thus the dipolar contribution 
to A is given by the equation 

A a4 = (gNpNpd-3kad3nan~ - &A PI 
where R is the distance between nucleus and lanthanide ion, n, is the direction 
cosine for the R vector, and g, is an element in the g tensor. 

Analytical methods have been recently developed (2 -3) to calculate the dipolar 
contribution exactly. These methods have been used to calculate NMR shifts for 
d electrons in transition metal complexes and the results vary significantly from the 
“point-dipole” values for distance up to 0.7 nm. It might be expected thatforbitals 
will produce less significant deviations but this needs to be checked. The signifi- 
cance of such a check can be appreciated when it is realized that ENDOR (4-6) 
and NMR (7-10) studies are appearing in which nuclear coordinates are being 
obtained from hyperline interactions using the “point-dipole” equations. Ac- 
curacies of 5 pm are quoted in the NMR studies and of 0.5 pm or better in the 
BNDOR studies. It appears essential that the accuracy of the “point-dipole 
approximation” used in these studies be critically examined forf electrons. This 
we have undertaken and the results are reported herein. 

General Procedure 

THEORY 

The hyperfme interaction between a nuclear spin I and an electron consists of 
two terms: (1) a dipolar interaction with electron spin s and (2) an interaction with 
the orbital angular momentum I of the electron. It can be written in the form (2) 

XIs = C P’{I*T(i)si + r$I*lt}, [31 

Tap = PrNarNP - 3&d& 

P’ = hw,PN. 

For calculating hyperfine terms it is convenient to rewrite Eq. [3] as 

X[S = I-P, 

P, = P’ C {T,,(i)~,i + T,,(i)svi + T,,(i)s,i + r,Y,i}. 

[41 

[51 

if4 

[71 

In calculating the hyperfine parameters, we start with a ground state of (2s + 1) 
functions which we label as 1 MS), where MS is the approximate azimuthal quantum 
number of fictitious spin S. By comparing matrix elements of Eq. [I] with those 
of Eq. [6] we can obtain the expressions 

Aa, = ~W#‘~~WMT, WI 
A,, = {(M, + l/P,IMS) + (MsIP,IMs + l)}/(F + S - M; - MS)1’2, 191 
A,, = i{(Ms + lIP,IM,) - (M~~P,~M~ + l)}/(S* + 5’ - MS - MS)lj2. [IO] 
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Equations [8] to [lo] are used to obtain the hyperfine parameters in the spin Hamil- 
tonian given in Eq. [ 11. 

The electronic wave functions 1 MS) are expressed in terms of singlef orbitalsf, 
which we will write as Slater orbitals 

f, = {(2p)9/8!}1’zr3e-PrY3m(B, +), [Ill 
where Y3,A0, 4) are the spherical harmonics. 

The integrals in Eqs. [8] to [lo] are two center integrals with Tap and 1, given in 
a coordinate system centered at the nucleus andf, expressed in a coordinate 
system on the lanthanide ion. These integrals were evaluated exactly using methods 
developed by Golding and Stubbs (I ) in which the f, functions are transformed 
onto the nuclear coordinate system. 

Con$gurution off’ 
The method of calculation can be illustrated, in part, by giving some details for 

the rather simple % state off’. The 1 MS ) functions for the ground state are of the form 

I7/2) = (7!)-lj2 det )f3’f2’f:fo’f?tf%Jk3 1, [121 
I5/2) = (7*7!)-1’2{det ~f;~2’f~fo’f?f5JZ3 1 

+ det ~f3'fX.fo'fL.1%f~~~ + .  . . I .  H31 

where superscripts + and - refer to the spin state. Since P, is a sum of one- 
electron operators, we obtain 

A,, =; C K$‘,l.G>, iI41 
7n 

Ax,  = ;  C  Uf#=,Ifm) + Klf’alffH, [W 
m 

A,, = f C UfflKxlf,) - K$‘,lftH. iI61 

We have found it convenielt to use real functions. For m # 0 all fin functions 
can be written 

f, = (WY44 + i+k>, iI71 

where & and & are real functions. We now define the terms 

TJ&kp = (d#&hcL [I81 

Lik = (+j 1 r , “ / ,  1 +r( )  .  [I91 

Since T$ = Tzi and Lik = -LF, we find 

Urn 1 Tap If, > = CT% + CW29 [201 

(f,lG3Ll(f,> = iLik = - ( . f - ,  )G3LIf-,). [211 

Equation [21] causes the summation over L, terms to drop out giving 

AuP = $ $ T$ = {(2#Y(8!)4v} 1 r6Tape-**‘dT. [221 
,  0 
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FIG. 1. Plot of the ratio of Ad calculated exactly to that calculated from the “point-dipole” model 
as a function of r (which is defined in text). Ratio is plotted forf13 in a cubic crystal field,f13 in an 
octahedral crystal field, and forf’. 

From Eq. [22] we see that the trace (C A,,) of the hyperfine tensor is zero be- 
cause C T,, = 0. Thus no isotropic component will appear at any separation. 
This results from the spherical symmetry of thef’ configuration of ‘3 state and is 
not a general property. We shall find that for configurations of lower symmetry 
the trace will not be zero. 

Following Golding and Stubbs ( 1) we now transform r6 and ee2@ onto the nuclear 
coordinate system and evaluate the various integrals. This can be quite laborious 
when determined by hand but we now have a computer program that computes 
this part of the calculation in an analytical form. The spherical symmetry off’ 
makes it unnecessary to evaluate all nine hyperfine parameters. We shall take 
the z axis to be the line connecting the nucleus to the lanthanide ion and will 
evaluate only A,, and A,,. The following equations result, 

A,, = (3 co9 8 - 1)P’R-3T,, v31 

A ES = - k (3 cos* 9 - 1) + i sin* 8 cos 24 
1 
P’Re3T2, v41 

+ 3t9 
Ti- ’ 

WI 

t = 2pR, WI 
where 6, C#J are polar coordinates for R. The ratio of the calculated hyperfine con- 
stant to that obtained from the “point-dipole approximation” is given by the 
function T2 which is plotted as a function oft in Fig. 1. 
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Configuration f l3 

Using the hole formulation, thef13 configuration can be treated as a one-electron 
problem. For the symmetries treated here, the resulting equations are much more 
complex and would make the paper quite cumbersome if they were included. We 
have therefore chosen to present the results in graphical form. The relevant equa- 
tions are stored in small computer programs a copy of which may be obtained 
from the authors upon request. 

In general each of the nine hyperfine tensor components is a summation of a 
series of terms of the form 

P’R-3yl,(~, b)ThdO, 

where the summation is over I = 0,2,4,6, and 8 and all possible m values. Value 
T&t) is a function oft similar in nature to T2 in Eq. [25] except that for I # 2 the 
limiting value is zero for large values oft. Equation [2] is always the limiting form 
for large t values. 

It is convenient to plot our results as the ratio A,, (calculated)/A,, (point-dipole) 
because the ratio will be a function oft, 8, and 4 only. The pseudoisotropic por- 
tion of the hyperfine constant (hereafter called A,) obtained from the average of the 
diagonal elements will be plotted as (A, x R3)/P’ because this is a dimensionless 
quantity depending again on only t, 8, and 4, making for easier comparisons 
between different systems and configurations. 

1. Cubicf13. We shall consider here the system of a rare earth ion in a cubic site 
of a CaF,-type crystal in which there are eight nearest-neighbor F- ions located 
along the (111) axes of the crystal. If we take the xyz coordinate system to be the 

b - 
: 0.0 . 

0 a . 
x 
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t 

FIG. 2. Plot of the dimensionless (A, x R 3)/P’ versus r forf13 in both a cubic and octahedral crystal field. 
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cubic axes, the T, ground state of the J = 7/2 state for-P3 can be written as 

I~f)=~~l~,~~)~~l~,~~) 

The g tensor is isotropic with g = 24/7. Following the procedures outlined above 
forf7 we have obtained equations for all nine hyperfine components. 

The nearest-neighbor nuclei are at 8 = cos-’ (1/3l’*) = 54.7”. At this orientation 
all1 off-diagonal elements are identical and all diagonal elements are the same. 
The ratio of the off-diagonal element to that predicted by the “point-dipole” 
equations is plotted versus I in Fig. 1. The value of (A, x R3)P is plotted in Fig. 2. 
V’alue A, would be zero for a point dipole. 

2. Octahedral f’“. If an f13 ion replaces a Mgz+ ion in KMgF,, it is in an 
octahedral site with six nearest-neighbor F- ions. In this case it has a Ts ground 
state which is written as 

and has an isotropic g of - 813. 

1 
0 M m so 0 so loo 150 lw 

t 

WI 

FIG. 3. Plot of the ratio of A, calculated exactly to that calculated from the “point-dipole” model 
as a function of r forf13 in a tetragonally distorted cubic field for different values of 8. 
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One of the nearest-neighbor fluorides has 0 = 0” and r#~ = 0”. For this orientation 
all off-diagonal elements are zero and A, = A,,. ThereforeA, = (A,, + 2A,)/3. 
In this system we have two methods of comparing with the “point-dipole approxi- 
mation.” One is to individually calculate the ratios for A,, and A,, and this is 
plotted in Fig. 1. The second method is to take the -ratio of (A, - A,,) to the 
“point-dipole” value and this is also plotted in Fig. 1. The second method drops 
out A, and is the normal way experimental data would be treated. It is seen to 
give a smaller deviation from unity in the ratio. The value of (A, x R3)/P’ as a 
function oft is plotted in Fig. 2. 

3. Tetrugonally distortedf13. If the cubic site in CaF, is distorted by the presence 
of an interstitial F- ion along the z axis the ground state becomes 

P91 

and 

g,, = $ (W - 3bZ), [301 

32 
g, = y 31i2ab. [3 11 

We have done the calculation using 

a = 0.79926, b = 0.60099, 

which are obtained from the experimental g values reported by Kirton and 
McLaughlan (II) for Yb3+ in CaF,. For this site the F- nuclei are at values of 8 
different from 54.7” but 4 = 45”. Symmetry requires that A,, = AIY, A,, = A,,, 
A,, = A,,, and A, = A,,. We need, therefore, report on only five of the nine 
hyperfine terms. The ratio of these five parameters to the “point-dipole” value 
are plotted in Fig. 3 for 8 = 45, 50, 60, and 65”. 

The isotropic portion of the tensor, A,, can be compared in several ways for 
this system. Since the “point-dipole” equations predict Ai, to be nonzero for values 
of other than 54.7” we can plot the ratio of A, to the “point-dipole” value of 

(P’/6R3)(g,, - gJ(3 cos2 8 - 1) [321 

as a function oft. This is shown in Fig. 4 for several angles. The reason for the 
large deviations from unity for this ratio when 8 approaches 54.7“ is found by 
examining the difference between A,(calculated) and A&point dipole). In Fig..5 is 
plotted this difference multiplied by R 3. It will be noted that the difference changes 
little with 8. Since A,(point dipole) goes to zero as 0 approaches 54.7” we can 
understand why the ratios plotted in Fig. 4 diverge from unity as 8 becomes 
close to 54.7”. 

A third way of looking at A, has been suggested by Hutchinson and McKay (4). 
They define a new hyperfine tensor A ’ in which A& = Ad/g,,. The traceof A ’ will 
be zero if it is pure “point dipole” in origin. A plot of tr (A’ x R3)/P’ versus t is 
given for various angles in Fig. 6. 
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FIG. 4. Ratio of A, calculated exactly to that calculated from “point-dipole” model as a function of 
I for bothf13 andfi in a tetragonally distorted cubic field for different values of 8. Solid line is forf13 
and dotted line forfl. 

Configuration f’ 
In a purely cubic environment f l has a fourfold degenerate ground state which 

makes EPR detection impossible. ENDOR measurements, therefore, have only 

0 so loo Eo zoo 
t t 

FIG. 5. Difference between (A, x R3)/f” calculated exactly and that calculated from the “point- 
dipole” model versus t forf*s andfi in a tetragonally distorted crystal field. 8 = 45,50, 55,60, and 65 
from left to right for each set of curves. 

FIG. 5. Difference between (A, x R3)/f” calculated exactly and that calculated from the “point- 
dipole” model versus t forf*s andfi in a tetragonally distorted crystal field. 8 = 45,50, 55,60, and 65 
from left to right for each set of curves. 
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IO 

FIG. 6. Trace of (A’ x R3)/P’ versus t forf13 in a tetragonally distorted cubic field for different 
values of 0. Value A’ is defined in text. 

been reported for distorted systems. Hyperfine values for nearest-neighbor fluo- 
rides and interstitial fluorides have been reported (12 -14) for a tetragonally dis- 
torted site in CaF, containing Ce3+. Baker et al. (25) have measured the g tensor 
and propose the Kramer’s doublet ground state of 

[331 

with a = 0.91. A better fit to the g values can be obtained by including a small 
admixture of [5/2, f l/2) but we have chosen the simpler Eq. [33] for our sample 
calculation. The g values are 

6 
g,, = 7 (5a2 - 3b2), 

g,=y . 5l’*ab 

[341 

A plot of the ratio for the five independent hyperhne parameters to the “point- 
dipole” value is given in Fig. 7 for 0 = 45”, 50”, 60”, and 65”. The ratio of A, to 
“point-dipole” value is plotted in Fig. 4 and the difference times R3 is plotted in 
Fig. 5. The trace of (A’ x R3)/P’ is plotted in Fig. 8. 

DISCUSSION 

To discuss these results intelligently we must know the ranges of c that are 
applicable to real systems. Clementi et al. (16) have given values of /3 for neutral 
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FIG. 7. Ratio ofA,, calculated exactly to that calculated from the “point-dipole” model as a function 
of z forf’ in a tetragonally distorted cubic field for different values of 0. 

lanthanide atoms. They report that 0 varies from (5.3/u,) for Pr to (7.4/uo) for Yb. 
Since we might expect a small increase in p for +3 ions, it seems reasonable to 
choose p = (5/u,,) forfl, p = (7/u,,) forf7, and p = (8/u,,) forfX3. Except for metallic 
hydrides, it is unlikely to find R to be less than 0.2 nm so that the smallest possible 
values of r would be 37 forfl, 53 forf7, and 60 forf13. Examination of the figures 
show that large deviations from the “point-dipole” values occur generally below 
t = 30 but significant deviations can occur as far as t = 100. 

One of the surprising results is the magnitude of A, at fairly large distances. For 
cubicf13, A, = -0.101 MHz for 19F at 0.23 nm and for octahedralf13, A, = 0.577 
MHz for 19F at 0.21 nm. These are significant values experimentally but they are 
still only about 6% or less (in magnitude) of the values found experimentally. 
For example, A, = 1.67 MHz (7, 17, 18) for Yb3+ in CaF, and A, = 22.67 MHz 
for Yb3+ in KMgF, (19), the large values being attributable to direct spin transfer 
into the s and p orbitals of the nearest-neighbor fluoride ion. For next nearest 
neighbors, however, the A, values calculated here are similar in magnitude to those 
found experimentally. Hutchison and McKay (4) have measured tr A’ for protons 
on water molecules attached to Nd3+ ions in which R > 0.3 nm. They report 
values of -0.130,0.017,0.010, and0.039MHzfortr A’ for thefourclosestprotons. 
We have calculated tr A’ for ‘H at 0.3 nm for both cubic and octahedralf13 as a 
function of 6, keeping 4 = 45”. The results are plotted in Fig. 9. It can be seen 
that tr A ’ varies dramatically with 8 and the range of values encompasses the 
experimental values reported by Hutchison and McKay (4). 
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FIG. 8. Trace of (A’ x RS)/P’ versus t forf’ in a tetragonally distorted cubic field for diierent values 
of 0. A’ is defined in the text. 

Although we have not carried out the calculation for Nd3+ itself (which can be 
accomplished, given enough time and patience), it appears very likely that the small 
isotropic terms reported in the ENDOR and NMR literature for next nearest 
neighbors could be attributable to deviations from the “point-dipole” model rather 
than to Fermi contact interactions on transferred spin. 

The deviation of individual hyperfine parameters from the “point-dipole” 
model is very much dependent on the configuration, the ground state wave func- 
tion, the 8 and 4 values, and the value of R. Forf7 the ratio plotted in Fig. 1 ap- 
proaches unity rapidly, differing only in the 10th significant figure at t = 40. Thus 
f7 can be treated as a point dipole for any reasonable value of R. This is not true 
for the other systems considered, in which deviations better- than 1% were found 
at t = 1000 in some instances. To obtain an estimate of-what errors can be gen- 
erated whenR is calculated from hyperhne measurements using the “point-dipole” 
equations, we have calculated a AR for each of the five hyperfine parameters in 
the tetragonalfl andf13 cases using the equation 

AR = R(z%Y3 - l), 

X = A,(calc)lA,(point dipole). 1361 

The average of the absolute values of the five AR ‘s is given in Table l.for R = 0.2, 
0.3, and 0.4 nm at different values of 8. From these calculations it would appear 
that errors of +(l to 2) pm are possible in determining position coordinates of 
nuclei from hype&e interactions when the “point-dipole” equations are used. 
This is larger than the errors quoted in some ENDOR (4,5) experiments. Any 
improvement in accuracy will require using exact calculations of the type carried 
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FIG. 9. Trace of A ’ (MHz) for a proton at R = 0.3 nm for anf13 ion in either a cubic or octahedral field. 
Trace is plotted versus 0 keeping 4 = 45”. Value 8 = 0 when nucleus is along a (100) axis of crystal 
and 0 = 90” when nucleus is along a (110) axis of crystal. 

out in this work; of course, use of thef’ ions (Gd3+ and Eu*+) would make such 
corrections unnecessary. 

CONCLUSIONS 

It has been shown in this work that differences in the hyperfine interaction for 
;annf electron calculated exactly and that calculated by the “point-dipole” model 
are small at distances greater than 0.2 nm but the difference is larger than most 

TABLE 1 

AVERAGE ERROR (AR) IN COMPUTED DISTANCE RSULTING 
FROM “POINT-DIPOLE APPROXIMATION” (AR IN PM) 

f*” (tetragonal distortion) f’ (tetragonal distortion) 

R (nm): 0.2 0.3 0.4 0.2 0.3 0.4 

10 0.99 0.63 0.46 6.76 4.30 3.18 
20 0.82 0.52 0.38 5.50 3.51 2.60 
30 0.63 0.37 0.28 3.57 2.28 1.69 
40 0.71 0.47 0.35 3.12 2.07 1.55 
50 1.97 1.35 1.02 4.89 3.46 2.66 
60 2.37 1.52 1.12 3.33 2.23 1.68 
70 0.97 0.62 0.46 2.16 1.49 1.14 
80 0.87 0.54 0.40 3.48 2.42 1.84 
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workers in the field have assumed. Errors in nuclear coordinates determined by 
using the “point-dipole” equations are negligible for the sphericalf’ ions but can 
be as large as +2 pm for ions with less symmetrical wave functions. Further it 
has been shown that the exact dipolar interaction is not traceless and produces a 
measurable isotropic term in the hyperflne interaction. For nearest neighbor 
ligands (R - 0.2 nm) this isotropic term is less than 6% of the isotropic term found 
experimentally but for next nearest ligand atoms (R - 0.3 nm) the magnitude is 
similar to that found experimentally. 

We, therefore, urge caution when the “point-dipole” equations are used to 
analyze hyperfine data whose precision is better than 1%. Also we urge extreme 
caution in interpreting isotropic terms for next nearest neighbors as “Fermi con- 
tact” interactions since they could be wholly or partly attributable to inadequacies 
in the “point-dipole” equations used to interpret the data. It should be pointed 
out that the A, term we have calculated is not related to the “pseudo-contact” 
shift often discussed in the NMR literature. The “pseudo-contact” term arises from 
the fact that the “point-dipole” equation, Eq. [2], is not traceless when the g ten- 
sor is not isotropic. 
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