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This paper is an extension of our work in the evaluation of NMR shifts in paramag- 
netic transition metal ions using a non-multipole expansion technique. For the first time 
we present the NMR shifts for a d’ system without assuming a strong crystal field. This 
work requires the evaluation of a number of further matrix elements which complete the 
set required for any d” system. A compact general expression has been developed to 
obtain analytical expressions for all the required matrix elements. Finally, the NMR 
shifts in a d2 system in a strong crystal field of octahedral symmetry are determined and 
the effect of configurational mixing is examined in detail. 

INTRODUCTION 

In recent years increasing attention has been focused on the theoretical evaluation 
of the NMR shifts in paramagnetic systems that arise from the electron-nuclear 
interaction represented by the theoretical Hamiltonian 

In Eq. [l], rNi is the radius vector of the ith electron about a nucleus, say N, with 
nuclear spin angular momentum I, INi is its orbital angular momentum about this 
nucleus, N, g, is the free-electron Land6 splitting factor (which for the purposes of 
this paper we shall take equal to 2 exactly), and the other terms have their usual 
meanings. Buckingham and Stiles (1) used a multipole expansion approach to 
evaluate the NMR shifts, which is a significant improvement on the results gained 
using the point-dipole approximation (2,3). The multipole expansion results are 
valid for R > 0.2 nm, the point-dipole approximation results for R > 0.3 nm. (R is 
the vector pointing from the NMR nucleus to the electron-bearing nucleus, as shown 
in Fig. 1.) Recently ($5) we gave a method of evaluating the contribution from [l] to 
the NMR shift which is valid for all distances R, thus overcoming the limitations of 
the aforementioned results (1-3). In the first paper (4), we treated a d’ system in a 
strong crystal field environment, where the crystal field was of octahedral, tetragonal, 
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FIG. 1. The coordinate system. 

or trigonal symmetry. In the second (5), ligand field effects were considered for a d’ 
system in a strong crystal field of octahedral symmetry. 

In this paper we present calculationsfor a d1 system in a crystal field of octahedral 
symmetry, the condition of strong field coupling having been removed, and for a d* 
system in a strong crystal field of octahedral symmetry. The effect of Coulomb 
repulsion mixing is incorporated in the latter case. Results for the d’ system have 
previously been given by Stiles (6), using the multipole expansion approach, and by 
Golding ef al. (7), who treated the special case with R along the z axis, although they 
were able to infer from their results the multiple expansion results valid for 
sufficiently large R. 

THEORY 

In calculating the contribution from [l] to the NMR shift, a crystal field approach 
was adopted and the eigenfunctions and eigenvalues of the appropriate theoretical 
Hamiltonian were calculated. The principal values a,,, my,,, and uz, of the nuclear 
shielding tensor u were determined by considering the magnetic field interaction as 
parallel to the x, y, and z directions and averaged assuming a Boltzmann distribution. 
The contribution from [l] to the NMR shift, A& is given by 

AB=$(a,,+cr,,+a;,), 

where 

where 

and 2’ is the Hamiltonian given in Eq. [l], Slater-type 3d orbitals were chosen, 
defined by 

15) = (2/3’/3r)“*yz em*‘, 

17) = (2/3’/31r)“*zx e-Or, 



PSEUDOCONTACT SHIFTS IN OCTAHEDRAL SITES 117 

15) = (2@‘/3r)“*xy e-O’, 

113) = (/37/187r)1’2(3.z2-r2) eeBr, 

Ie) = @‘/67r)“*(x*- y*) em@‘. 

This NMR shift AB, is referred to as the pseudocontact shift. 
In calculating AB, molecular hyperfine integrals in addition to those given by us in 

Ref. (4) had to be evaluated. In the process of evaluating these integrals using the 
method given in Ref. (4), we developed a more streamlined method for evaluating 
the integrals of the Hamiltonian 

~=~gsm3h i 
3(rN - s)rN - I s - I 

r; -x . I Dl 

Equation [2] may be expressed in dyadic notation as 

where 

Tolo = CharNo - d&p~lr~, 

which may be expressed as 

A master formula was developed for the integrals, 

(~2d(dl Y2dh.b 4%4)/d I~2m(r)), 

where I$2m(r)) and I&,,,(r)) are 3d Slater-type orbitals defined by 

lt+b2m(r)) = (8/37/45)1’2r2 e?Y2,(B, 4). 

[31 

A general expression was derived by setting up in quite general terms the 
expression for the above integral, [3], and then extracting the coefficients of the 
various radial integrals u,,(t), 0” (t), w,,(t), x,(t), and yn (t) (where I = 2/3R) defined in 
Ref. (4). The general expression is 

(42m’(r)l Y2M(h d-d/&($2m(r)) = c6sl y6q(@ @) + C4F(pL) y4,(@? @) 

+C,Th’,A’)Y;?q(@, @)+Co~lYoq(@, @L 

where 

q =M-m’+m, 

s1 = [5& + 20u3 + 30w4+ 20x5 + 5y,j], 

F(p)=[5~~+(20-A)v1+At1~+(30-B)~2+B~4+(20-C)~~ 

+cxs+5y41, 
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where 

A =F, B = (1/7)(1Op -45), c = (1/9)(5/A - 30), 

T(/1.‘,A’)=[5~2+(20-A’)ul+A’u3+(30-B’-C’)~~~+B’~~~ 

+C’w4+(20-A’)x1+Afxx+5y,], 

where 

A’=p’, B’= (10/3)(p’-A’+ l), C’=A’, 

and 

N~=[5~~+14~r+6u~i-(5/3)(7wo+llwz)+20xr+5yo]. 

The seven unknowns C,, C,, CZ, CO, p, p’, and A’ are determined from 

coefficient of us = &flYZm, (0, @) Y~M(@, @) Yzm(O, @); 

coefficient of 01(t) = +?7r 
1 

l 
-M-p /.zt 

(-lj”‘m+F( 2 m’, :, 
-m 

x Y2x,’ (0, @) yl,l?-~,(o, @) Yl,M+*(O, @) + (-l)“+m’ 

x 2 i l 
m’ 

l YT,,~tpm @I Yz,(O, CD,) Y1,MtF(O, a); 
-m’-p /.I. 1 

2 
coefficient of we(t) = 9(5)1,2 ( ; 2 ; Y:,,,(O,@)+(-l)“+; -I, ;) > 9(5) 

x Y**(@, @)+$y$y2 &ie, (-l)m+m’+W 

x2 11211 
( -m M+m+p -M-p >( M /et -M-F > 

YT,m~+w(o, @)Yl.M+mt&(O, CD). 

As an example ($20(r)l Y20(~N, d’N)ld isr/ 20 r ( 1) is evaluated. The coefficient of u*(t) is 
(&/45)Y&, (0, G), which is equal to 

8 
y60(@, @>+- 

2 4 
77(5p2 Y4”(@, @,) f- Y2cl(@, @I + 21 - Yoo(@, @I> 63(5)“2 

from which it follows that CS = 4/(77(65)“‘), C4 = S/(385(5)“‘), C2 = 2/105, and 
C, = 4/(315(5)“2). The coefficient of v*(t) is 

16 8 8 
105(5p2 Y40(@, @If% Y20(@ @I +45(5)1/2 ~ Yoo(@, @) 

= c4 y Y40(0, @)+C2[12lY2o(@, @)+co[14lYfJo(@, @I, [ 1 
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from which it follows that p = 38/3 and p’ = 8. Finally, the coefficient of we(t) is 

whence A’ = 4. This completes the evaluation of the integral. 

RESULTS 

(a) d’ System, Crystal Field of Octahedral Symmetry 

For a d’ transition metal ion in a crystal field of octahedral symmetry, the 
theoretical Hamiltonian representing the various interactions we need consider is 
given by 

h2V2 Ze2 yf=-- --+ [I * s + V(r) + pB(l+ 2s) * B + %?,,yperfi,,e, 
2m, r 

where V(r) is the crystal field term, the strength of which is defined by the crystal field 
parameter A ; ~~~~~~~~~ is the Hamiltonian of Eq. [l]; and the other terms have their 
usual meanings. Results are given for the contribution to the NMR shift for two 
cases, namely, (i) A = 0; and (ii) A # 0. 

(i) Zero Crystal Field 

When there is zero crystal field present, the 2D ground-state level is split by 
spin-orbit coupling into two levels with J values of 2 and 1 and with eigenvalues of [ 
and -&‘, respectively. The contribution to the NMR shift is given by’ 

Al3 2 PO 1-6 [Ko+Goexp(5~/2kT)+Mo(l-exp(5~/2kT))kT/Sl -=---- 
B 75 41r kT 3 +2 exp(55/2kT) 

where 

Ko=36P3e-’ &+g+g+t+l 
( 

, 
. . 

Go = 16p3 e-’ 
i 

4 3 2 

-k+k+b+t+l 
. 

M,=4p3 e-’ 
4 3 2 

k+&+&+t+l 
. . 

where t = 2pR. The condition of zero crystal field is reflected by the absence of any 
angular dependence of the final result for ABIB. This must be so since in this case the 
system is isotropic. 

1 This result was previously given by Gelding et al. (7), and is given here for completeness. Note that in 
their Eq. [6], B. is in error and should be 
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The NMR shift for R = 0 is readily determined from the above. As R + 0, 

AB 2 
B-+-g+ +-- kr 

-3 PO CL; [36+ 16 exp(5U2kT) +${l -exp(5l/2kT)}kT/[], 
?-I- 3 +2 exp(5l/2kT) 

where (rY3) = p3/15. 

(ii) Nonzero Crystai Field 

For the case of nonzero crystal field, the contribution to the NMR shift is given by 

AB 2 ~0 ~;f If=, (Ai + BikT) exp(-&i/kT) -=--- 
B 341~ kT Ci’_l pi exp(-&i/W ’ 

where 

Pl=P2=2 and P3=lr 

5 A X 
El =-i+lo+z’ 

t A X 
&2=-4+10-5, 

~3=!:-34, 

and 

X2=?f~2+A~+A2. 

We shall express Ai and Bi using matrix notation. If we define 

l/2 

ab = --$-AX-‘, 

we may then define matrices g$ and h 2 as shown in Tables 1 and 2, respectively. Ai 
and Bi are given by 

Ai = k 6, a,&,‘, i= 1,2, 

A3 = $(Ao + 2Bo - 2Eo), 

Bi=& ; b,hF, i = 1,2,3, 
??I=1 
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TABLE 1 
THE MATRIX ELEMENTS gz 

m i=l i=2 

4 
(&a’b 
a2b2 
-(6)“*ab3 
b4 

4 
&b3a 

2 2 
(bs:“ba’ 
a4 

where the coefficients a,,, and b, are given by 

1 

ai 
a2 

a3 
a4 

a5 

-32 
-82 

-‘8 
-19 

18 

-14 
-16 

139 

2Yo 
35 
3 

5 

44 -12 -36 4 -132 
124 

2’6 -4 22 36 18 

44 

436 -14 212 
28 -4 28 8 -4 

-36 -12 24 -36 -72 

8 1 -12 -32 
52 94 72 92 
208 -3 8 -46 -y 

40 -30 0 80 
2!2 

lb y 5 0 0 

140 

2; 

TABLE 2 
THE MATRIX ELEMENTS h$' 

m i=l i=2 i=3 

1 
a4+b4 

El-E2 

2 
a2b2 

El-E2 

3 (6)““ab3 (6)“2a3b - 

El-E2 

4 
a2 

El-E3 

(6)“2ab 

El-E3 

b2 

El -c3 

b4+a4 

E2-El 

b2a2 

e2-c1 

b2 

&Z-&3 

a 2 AT-+- a2 

E2-E3 &3-&l E3-62 

0 

0 

0 

-+b2 a2 

&3-&l E3-E2 

(61”2ab (6)“2ab 
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and the six functions A,), Bo, Co, Do, Eo, and F,, which are functions of the vector R 
are defined in terms of the molecular hyperfine integrals by 

A~~(R~=~~l~~~l5~+~rlI~~~,I~~+~SI~~,lf-~, 

~o(R)=(5l~~,l~)+(~/~~=l5)+(~l~,,l5), 
Co(R~=31’2~~l~~~I~~+31’2~~l~~z~~~-2(3)”’~~l~~,~l~~+3~~l~,,I~~-3~5l~,~/e~, 

~,o=~~~l~~~l~~-~~~lTTilB~+~~~l~~,l~~-~(Rl~~~/E). 

C)(R) = ~[(SI~N~/~~I~)+(~I~N~/~~: lt)+(~lW~1:lOl, 

Fo(R>=~ ~~~l~~,l~~(H~+~~~l~~~l~~l~~-~~~I~~~Ir~ie~ c 

. +$r7lbdrklai -h$k/dla)]. 

The molecular hyperfine integrals for Ao, Bo, and E. were given by us in Ref. (4); 
those for CO, DO, and FO are listed in Appendix B. In terms of their specific radial and 
angular dependences, these six functions are given by 

Ao(R)= -&(&,“‘Z#‘, .,s,(R)+&($2z@, CD)F@) 
167~~” 

-52jzom @N*(R), 
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The three functions Z,, Zq, and 2, have been defined as the appropriate combina- 
tions of the spherical harmonics Y,,(O, @) that transform as the irreducible 
representation Alal of group 0 for 1= 0, 4, and 6: 

The functions of radial dependence are given in Appendix A, with F7 = Ft-24), 
F12 = F(38/3), and F23 = F(31). 

(b) d2 System, Octahedral Symmetry 

For a d2 system in a strong crystal field of octahedral symmetry the Hamiltonian 

results in a 3 T1 ground state (8) whose relative energy for the t: configuration is given 
by 

where A and B are the Racah parameters and A is the crystal field parameter. 
(Mixing due to the Coulomb repulsion interaction between the 3TI state of the t: 
configuration and the 3rI state of the et2 configuration is considered in Section (c).) 
The spin-orbit coupling interaction splits this 3T1 term into three levels E1, E>, and 
E3. 

The pseudocontact contribution to the NMR shift is given by 

AB- 2 PO pi C?=I (Ai +BikT/[) exp(-E,/kT) -- 
B -34rkT I;=, pi exp(-EJkT) ’ 

where 

El=& 
E2 = $2 
E3 = -&, 

pl=l,p2=3,p3=5,and 

Al=O, 

A2=;Ao+Bo+$Eo, 

AJ = -tAo-Bo+zEo, 

BI = 4A. + 8B,, + 8E,,, 
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Bz = -6A. - 12B,, - 3Eo, 

B3 = 2Ao + 4Bo- 5Eo, 

where A,,, Bo, and EO are the functions of R defined above. 

(c) d2 System, Incorporating Coulomb Repulsion Mixing 

The results given in the previous section for a d2 system in a strong crystal field of 
octahedral symmetry were extended to incorporate mixing due to the Coulomb 
repulsion interaction between the 3 TI state of the ti configuration and the 3 T1 state 
of the et2 configuration. Wavefunctions of the form 

ABIB (ppm) 
2ot 

b) 

FIG. 2. The @ dependence of AB/B (ppm) for a d’ system in a crystal field of octahedral symmetry 
where (a) A = 500 cm-‘; and (b) A = 5000 cm-‘. The NMR nucleus is in the xy plane 0.2 nm from the 
d-electron-bearing nucleus (T = 300 K). 



PSEUDOCONTACT SHIFTS IN OCTAHEDRAL SITES 125 

TABLE 3 

THE VARIATION OF THE NMR SHIFT WITH 
RESPECTTOTHECRYSTALFIELDPARAMETER, A, 
FORA d’ SYSTEMINACRYSTALFIELDOFOCTA- 

HEDRAL~YMMETRY 

A 
(cm-‘) 

ABl B (ppm) 
at@=0 

ABIB (w-d 
at @ = 45” 

0 -38.40 -38.40 
250 -51.75 -31.40 
500 -62.07 -21.63 
750 -69.00 -13.23 

1,000 -73.63 -6.97 
1,500 -79.19 0.87 
2,500 -84.36 8.01 
5,000 -88.47 13.46 
7,500 -89.86 15.22 

10,000 -90.54 16.08 
12,500 -90.95 16.56 
15,000 -91.22 16.92 
25,000 -91.75 17.58 
50,000 -92.15 18.06 

were used, with the coefficients a and b calculated from the matrix (9) 

3Tl t: et2 

d AdB-$A 6B 

et2 6B A+4B+fA [41 

The spin-orbit coupling interaction splits the 3T~ ground-state term into three levels 
with relative values for the energy of 

El = l”, 

E2 = $r”, 

E3 = -;(“, 

where 
l”= (a’-2ab -+b*)& 

The contribution to the shift is given by 

AB 2 PO P; Cf=I {Aif(~, b)+Big(a, b)kT/[“} exp(-Ei/kT) -=--- 

B 34rkT Cy=l pi exp(-JSlk’T) ’ 

where p1 = 1, p2 = 3, p3 = 5, and 

f(u, b) = a*-$zb +$b2, 

g(u, b) = u2+2ub +$b2, 
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and 
A1 = 0, 

A,=:k(a,b,R)+~m(a,b,R), 

A3 = -h’c(a, b, R)+:m(a, b, R), 

B1=4k(a,b,R)+8m(a,b,R), 

II2 = -6k(a, 6, R)-3m(a, 6, R), 

I33 = 2&z, b, R) - 5m(a, b, R), 

where 

k(a,b,R)=a2(A,,+2Bo)+abC,,+b2(-Ao+Bo-Do), 

m(a, b,R)=a’Eo-ubFO--$b’Eo. 

Aa/e (pm) 
-10 

t 

a 

I 
-20. 

-30 

-40 

-50 

-60 

-70 ri 

b 

FIG. 3. The @ dependence of AB/B (ppm) for a dZ system in a strong crystal field of octahedral 
symmetry for the case when the NMR nucleus is in the xy plane 0.2 nm from the d-electron-bearing 
nucleus for the two cases: (a) f: configuration only; and (b) t$ and et, configurations (T = 300 K). 
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DISCUSSION 

To illustrate the results for a d’ system, AB/B is plotted in Fig. 2 as a function of 
the angle @ for two values of the crystal field parameter A: A = 500 cm-’ and 
A = 5000 cm-’ . The central metal ion is taken to lie in the xy plane 0.2 nm from the 
NMR nucleus. The case of a Ti3+ ion is considered, for which the value of the 
spin-orbit couplingcIonstant, l (calculated from the appropriate spectroscopic data 
(IO)), is [= 154 cm , and from Slater’s rules p = 4/(3ao). In the xy plane AB/B has 
a sinusoidal dependence on Qi, varying between -62.07 and -21.63 ppm for A = 
500 cm-l, and between -88.47 and 13.46 ppm for A = 5000 cm-‘. Thus, for inter- 
mediate strengths of the crystal field, we see that there is a noticeable dependence of 
the NMR shift AB upon the crystal field parameter A. This is further shown in Table 
3, where AB/B is given for a range of values of A. The central metal ion is once more 

Y 

FIG. 4. The isoshielding diagram for a d2 system (t: and et2 configurations considered) for the case 
when the NMR nucleus lies in the xy plane. The scale on the axes is in units of 0.1 nm (T = 300 K). 
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chosen to lie in the xy plane 0.2 nm from the NMR nucleus. The second column 
contains the minimum value of AB/B (at 0 = 0’) and the third column the maximum 
(at @ = 45”). For values of A larger than 10,000 cm-‘, the change in the NMR shift 
with respect to A is slight. 

To illustrate the results for the d* system, we consider the case of a V”’ ion, in 
which l= 210 cm-’ (10) and p = 1.55/a”. The quantity AB/B is plotted in Fig. 3 as a 
function of the angle @ for the case when the central metal ion is in the xy plane 
0.2 nm from the NMR nucleus. Figure 3a gives the results for the case when 
Coulomb repulsion mixing is ignored, Fig. 3b for the case when it is incorporated into 
the calculations. In the latter case the crystal field parameter A is taken to be 
20,000 cm-’ and the value of the Racah parameter B as B = 860 cm-‘(9j. 
Diagonalizing the matrix [4] yielded values of a = 0.9842 and b = -0.1771 for the 
mixing coefficients. Even though the amount of mixing is quite small, a comparison of 

FIG. 5. The isoshielding diagram for a dt$ system for the case when the NMR nucleus lies in the xy 
plane. The scale on the axes is in units of 0.1 nm (T = 300 K). 
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Figs. 3a and b shows that there has been a marked effect on the value of the NMR 
shift AB by incorporating the effect of Coulomb repulsion mixing. 

Finally, we present in Figs. 4 and 5 isoshielding diagrams for a d* system for the 
case when the NMR nucleus lies in the xy plane. The values of f; p, A, and the Racah 
parameter 23 were chosen as above. An isoshielding diagram is a contour map in 
which the contours are lines of equal chemical shifts (5, II). Figure 4 gives the results 
for the case when Coulomb repulsion mixing is incorporated, Fig. 5 for that when it is 
not, the dtg system. There are regions where AB becomes slightly positive, of the 
order of 0.45 ppm in Fig. 5. A comparison with an isoshielding diagram for a d1 
system in a strong crystal field of octahedral symmetry-see Ref. (5), in which there 
are “lobes” in the map where AB reaches 50 ppm-highlights the dissimilarities that 
may occur in the isoshielding diagrams of three seemingly similar functions, that is, 
those of the form 

AB/B =aZo(O, @)+pZ,(O, @)+SZ6(0, @). 

APPENDIX A: THE RADIAL SERIES 

For integrals of 1J& define 

t(p)=ul+(3-A)w,,+Awzf(3-B)xl+Bq+y~, 

where A = p and B = i(3,u - 1). The explicit forms of the radial series in terms of 
t = 2pR are 

s 
1 

= 16,632,000p3 
t7 

l-e-’ ; l”/n!], 
n=O 

T(#u’,A’)=~ 6y3[(7*.-3p’+3) 

t’ I (,u’-9) 6 (7A’-2,u’-6) 5 
144 t+ 144 

t +(7*‘-3/J’+3) do t”/n!)], 
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The appearance of the incomplete factorial function, 

i&J(t) =N! 1 -e-’ ; P/M ! ) 
[ n=O I 

ties in with results of Gottlieb et al. (12). 

APPENDIX B: SOME MOLECULAR HYPERFINE INTEGRALS INVOLVING 

THE e ORBITALS 

Employing the notation of Griffith (8) define 

We also require one additional radial series defined by 

T4 = VI- 7.13 + (l/21)(49 wo-4ow2-9w~)+x1-x3. 

The additional molecular hyperfine integrals involving the e orbitals are 
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+ik: 0 

l/2 
167~~” 

W3, W~O(@, @) +~N,Zoo(O, @p>, 

(.lT,,l&)=~(~)1’2s1z:L4(B, o)+&#2slz~o(o, (9) 

32 T I’2 -- - 
( > 495 35 F(9)Z% (0, CD> -gF( y)Z,,(B, @) 

+&(;y2T( 12,3z,,(Q, @~-gNizoo~@, @), 

112 

&%zlr~l~>= --%f~Zdo(e, @)+g($ 1’2t(+j!)Z20~@, CD) 

SIT l/2 
-~nlZoo(@, @I, 
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