# The Theory of the Pseudocontact Contribution to NMR Shifts of $\boldsymbol{d}^{\mathbf{1}}$ and $\boldsymbol{d}^{\mathbf{2}}$ Transition Metal Ion Systems in Sites of Octahedral Symmetry 

R. M. Golding and L. C. Stubbs*<br>Department of Physical Chemistry, University of New South Wales, Box 1, P.O., Kensington, 2033, New South Wales, Australia

Received October 12, 1979


#### Abstract

This paper is an extension of our work in the evaluation of NMR shifts in paramagnetic transition metal ions using a non-multipole expansion technique. For the first time we present the NMR shifts for a $d^{1}$ system without assuming a strong crystal field. This work requires the evaluation of a number of further matrix elements which complete the set required for any $d^{n}$ system. A compact general expression has been developed to obtain analytical expressions for all the required matrix elements. Finally, the NMR shifts in a $d^{2}$ system in a strong crystal field of octahedral symmetry are determined and the effect of configurational mixing is examined in detail.


## INTRODUCTION

In recent years increasing attention has been focused on the theoretical evaluation of the NMR shifts in paramagnetic systems that arise from the electron-nuclear interaction represented by the theoretical Hamiltonian

$$
\begin{equation*}
\mathscr{H}=\frac{\mu_{0}}{4 \pi} g_{\mathrm{N}} \mu_{\mathrm{B}} \mu_{\mathrm{N}} \sum_{i=1}^{n}\left[g_{\mathrm{s}}\left(\frac{3\left(\mathbf{r}_{\mathrm{N} i} \cdot \mathbf{s}_{i}\right) \mathbf{I}_{\mathrm{N} i} \cdot \mathbf{I}}{r_{\mathrm{N} i}^{5}}-\frac{\mathbf{s}_{i} \cdot \mathbf{I}}{r_{\mathrm{N} i}^{3}}\right)+\frac{2 \mathbf{I}_{\mathrm{N} i} \cdot \mathbf{I}}{r_{\mathrm{N} i}^{3}}\right] . \tag{1}
\end{equation*}
$$

In Eq. [1], $\mathbf{r}_{\mathrm{N} i}$ is the radius vector of the $i$ th electron about a nucleus, say N , with nuclear spin angular momentum $\mathbf{I}, \mathbf{I}_{\mathbf{N} i}$ is its orbital angular momentum about this nucleus, $\mathrm{N}, g_{\mathrm{s}}$ is the free-electron Landé splitting factor (which for the purposes of this paper we shall take equal to 2 exactly), and the other terms have their usual meanings. Buckingham and Stiles (1) used a multipole expansion approach to evaluate the NMR shifts, which is a significant improvement on the results gained using the point-dipole approximation (2,3). The multipole expansion results are valid for $R>0.2 \mathrm{~nm}$, the point-dipole approximation results for $R>0.3 \mathrm{~nm}$. ( $\mathbf{R}$ is the vector pointing from the NMR nucleus to the electron-bearing nucleus, as shown in Fig. 1.) Recently $(4,5)$ we gave a method of evaluating the contribution from [1] to the NMR shift which is valid for all distances $R$, thus overcoming the limitations of the aforementioned results (1-3). In the first paper (4), we treated a $d^{1}$ system in a strong crystal field environment, where the crystal field was of octahedral, tetragonal,

[^0]

Fig. 1. The coordinate system.
or trigonal symmetry. In the second (5), ligand field effects were considered for a $d^{1}$ system in a strong crystal field of octahedral symmetry.

In this paper we present calculations for a $d^{1}$ system in a crystal field of octahedral symmetry, the condition of strong field coupling having been removed, and for a $d^{2}$ system in a strong crystal field of octahedral symmetry. The effect of Coulomb repulsion mixing is incorporated in the latter case. Results for the $d^{1}$ system have previously been given by Stiles (6), using the multipole expansion approach, and by Golding et al. (7), who treated the special case with $\mathbf{R}$ along the $z$ axis, although they were able to infer from their results the multiple expansion results valid for sufficiently large $R$.

## THEORY

In calculating the contribution from [1] to the NMR shift, a crystal field approach was adopted and the eigenfunctions and eigenvalues of the appropriate theoretical Hamiltonian were calculated. The principal values $\sigma_{x x}, \sigma_{y y}$, and $\sigma_{z z}$ of the nuclear shielding tensor $\sigma$ were determined by considering the magnetic field interaction as parallel to the $x, y$, and $z$ directions and averaged assuming a Boltzmann distribution. The contribution from [1] to the NMR shift, $\Delta B$, is given by

$$
\Delta B=\frac{1}{3} B\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right),
$$

where

$$
\sigma_{\alpha \beta}=\left(\frac{\partial^{2}\langle\mathscr{H}\rangle}{\partial \mu_{\alpha} \partial B_{\beta}}\right)_{\mu=\mathbf{B}=\mathbf{0}},
$$

where

$$
\boldsymbol{\mu}=g_{\mathrm{N}} \mu_{\mathrm{N}} \mathbf{I},
$$

and $\mathscr{H}$ is the Hamiltonian given in Eq. [1]. Slater-type $3 d$ orbitals were chosen, defined by

$$
\begin{aligned}
& |\xi\rangle=\left(2 \beta^{7} / 3 \pi\right)^{1 / 2} y z e^{-\beta r}, \\
& |\eta\rangle=\left(2 \beta^{7} / 3 \pi\right)^{1 / 2} z x e^{-\beta r},
\end{aligned}
$$

$$
\begin{aligned}
& |\zeta\rangle=\left(2 \beta^{7} / 3 \pi\right)^{1 / 2} x y e^{-\beta r} \\
& |\theta\rangle=\left(\beta^{7} / 18 \pi\right)^{1 / 2}\left(3 z^{2}-r^{2}\right) e^{-\beta r} \\
& |\varepsilon\rangle=\left(\beta^{7} / 6 \pi\right)^{1 / 2}\left(x^{2}-y^{2}\right) e^{-\beta r}
\end{aligned}
$$

This NMR shift $\Delta B$, is referred to as the pseudocontact shift.
In calculating $\Delta B$, molecular hyperfine integrals in addition to those given by us in Ref. (4) had to be evaluated. In the process of evaluating these integrals using the method given in Ref. (4), we developed a more streamlined method for evaluating the integrals of the Hamiltonian

$$
\begin{equation*}
\mathscr{H}=\frac{\mu_{0}}{4 \pi} g_{s} g_{N} \mu_{B} \mu_{N}\left\{\frac{3\left(\mathbf{r}_{\mathrm{N}} \cdot \mathbf{s}\right) \mathbf{r}_{N} \cdot \mathbf{I}}{r_{\mathrm{N}}^{5}}-\frac{\mathbf{s} \cdot \mathbf{I}}{r_{\mathrm{N}}^{3}}\right\} . \tag{2}
\end{equation*}
$$

Equation [2] may be expressed in dyadic notation as

$$
\mathscr{H}=\frac{\mu_{0}}{4 \pi} g_{\mathrm{s}} g_{\mathrm{N}} \mu_{B} \mu_{N} s \cdot \mathbf{T} \cdot \mathbf{I},
$$

where

$$
T_{\alpha \beta}=\left(3 r_{\mathrm{N} \alpha} r_{\mathrm{N} \beta}-r_{\mathrm{N}}^{2} \delta_{\alpha \beta}\right) / r_{\mathrm{N}}^{5},
$$

which may be expressed as

$$
T_{\alpha \beta}=\sum_{M=-2}^{2} C_{\alpha \beta}^{(M)} Y_{2 M}\left(\theta_{\mathrm{N}}, \phi_{\mathrm{N}}\right) / r_{\mathrm{N}}^{3}
$$

A master formula was developed for the integrals,

$$
\begin{equation*}
\left\langle\psi_{2 m^{\prime}}(\mathbf{r})\right| Y_{2 M}\left(\theta_{\mathrm{N}}, \phi_{\mathrm{N}}\right) / r_{\mathrm{N}}^{3}\left|\psi_{2 m}(\mathbf{r})\right\rangle \tag{3}
\end{equation*}
$$

where $\left|\psi_{2 m}(\mathbf{r})\right\rangle$ and $\left|\psi_{2 m^{\prime}}(\mathbf{r})\right\rangle$ are $3 d$ Slater-type orbitals defined by

$$
\left|\psi_{2 m}(\mathbf{r})\right\rangle=\left(8 \beta^{7} / 45\right)^{1 / 2} r^{2} e^{-\beta r} Y_{2 m}(\theta, \phi)
$$

A general expression was derived by setting up in quite general terms the expression for the above integral, [3], and then extracting the coefficients of the various radial integrals $u_{n}(t), v_{n}(t), w_{n}(t), x_{n}(t)$, and $y_{n}(t)$ (where $t=2 \beta R$ ) defined in Ref. (4). The general expression is

$$
\begin{aligned}
\left\langle\psi_{2 m}(\mathbf{r})\right| Y_{2 M}\left(\theta_{\mathrm{N}}, \phi_{\mathrm{N}}\right) / r_{\mathrm{N}}^{3}\left|\psi_{2 m}(\mathbf{r})\right\rangle= & C_{6} S_{1} Y_{6 q}(\Theta, \Phi)+C_{4} F(\mu) Y_{4 q}(\Theta, \Phi) \\
& +C_{2} T\left(\mu^{\prime}, \lambda^{\prime}\right) Y_{2 q}(\Theta, \Phi)+C_{0} N_{1} Y_{0 q}(\Theta, \Phi)
\end{aligned}
$$

where

$$
\begin{aligned}
q= & M-m^{\prime}+m, \\
S_{1}= & {\left[5 u_{2}+20 v_{3}+30 w_{4}+20 x_{5}+5 y_{6}\right], } \\
F(\mu)= & {\left[5 u_{2}+(20-A) v_{1}+A v_{3}+(30-B) w_{2}+B w_{4}+(20-C) x_{3}\right.} \\
& \left.+C x_{5}+5 y_{4}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
A= & \mu, \quad B=(1 / 7)(10 \mu-45), \quad C=(1 / 9)(5 \mu-30), \\
T^{\prime}\left(\mu^{\prime}, \lambda^{\prime}\right)= & {\left[5 u_{2}+\left(20-A^{\prime}\right) v_{1}+A^{\prime} v_{3}+\left(30-B^{\prime}-C^{\prime}\right) w_{0}+B^{\prime} w_{2}\right.} \\
& \left.+C^{\prime} w_{4}+\left(20-A^{\prime}\right) x_{1}+A^{\prime} x_{3}+5 y_{2}\right],
\end{aligned}
$$

where

$$
A^{\prime}=\mu^{\prime}, \quad B^{\prime}=(10 / 3)\left(\mu^{\prime}-\lambda^{\prime}+1\right), \quad C^{\prime}=\lambda^{\prime}
$$

and

$$
N_{1}=\left[5 u_{2}+14 v_{1}+6 v_{3}+(5 / 3)\left(7 w_{0}+11 w_{2}\right)+20 x_{1}+5 y_{0}\right]
$$

The seven unknowns $C_{6}, C_{4}, C_{2}, C_{0}, \mu, \mu^{\prime}$, and $\lambda^{\prime}$ are determined from

$$
\text { coefficient of } u_{2}(t)=\frac{8}{45} \pi Y_{2 m^{\prime}}^{*}(\Theta, \Phi) Y_{2 M}(\Theta, \Phi) Y_{2 m}(\Theta, \Phi)
$$

coefficient of $v_{1}(t)=\frac{16}{9} \pi \sum_{\mu=-1}^{1}\left(\begin{array}{ccc}2 & 1 & 1 \\ M & -M-\mu & \mu\end{array}\right)\left\{(-1)^{M+m+\mu}\left(\begin{array}{ccc}2 & 1 & 1 \\ -m & m-\mu & \mu\end{array}\right)\right.$

$$
\begin{aligned}
& \times Y_{2 m^{\prime}}^{*}(\Theta, \Phi) Y_{1, m-\mu}(\Theta, \Phi) Y_{1, M+\mu}(\Theta, \Phi)+(-1)^{M+m^{\prime}} \\
& \left.\times\left(\begin{array}{ccc}
2 & 1 & 1 \\
m^{\prime} & -m^{\prime}-\mu & \mu
\end{array}\right) Y_{1, m^{\prime}+\mu}^{*}(\Theta, \Phi) Y_{2 m}(\Theta, \Phi) Y_{1, M+\mu}(\Theta, \Phi)\right\}
\end{aligned}
$$

coefficient of $w_{0}(t)=\frac{2}{9(5)^{1 / 2}}\left(\begin{array}{ccc}2 & 2 & 0 \\ M & m & 0\end{array}\right) Y_{2 m^{\prime}}^{*}(\Theta, \Phi)+(-1)^{M} \frac{2}{9(5)^{1 / 2}}\left(\begin{array}{ccc}2 & 2 & 0 \\ M & -m^{\prime} & 0\end{array}\right)$

$$
\begin{aligned}
& \times Y_{2 m}(\Theta, \Phi)+\frac{40}{9}\left(\frac{2 \pi}{3}\right)^{1 / 2} \sum_{\mu=-1}^{1}(-1)^{m+m^{\prime}+\mu} \\
& \times\left(\begin{array}{ccc}
2 & 1 & 1 \\
-m & M+m+\mu & -M-\mu
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 1 \\
M & \mu & -M-\mu
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
2 & 1 & 1 \\
m^{\prime} & -m^{\prime}-\mu & \mu
\end{array}\right) Y_{1, m^{\prime}+\mu}^{*}(\Theta, \Phi) Y_{1, M+m+\mu}(\Theta, \Phi)
\end{aligned}
$$

As an example $\left.\left\langle\psi_{20}(\mathbf{r})\right| Y_{20}\left(\theta_{\mathrm{N}}, \phi_{\mathrm{N}}\right)\left|r_{\mathrm{N}}^{3}\right| \psi_{20}(\mathbf{r})\right\rangle$ is evaluated. The coefficient of $u_{2}(t)$ is $(8 \pi / 45) Y_{20}^{3}(\Theta, \Phi)$, which is equal to

$$
\frac{4}{77}\left(\frac{5}{13}\right)^{1 / 2} Y_{60}(\Theta, \Phi)+\frac{8}{77(5)^{1 / 2}} Y_{40}(\Theta, \Phi)+\frac{2}{21} Y_{20}(\Theta, \Phi)+\frac{4}{63(5)^{1 / 2}} Y_{00}(\Theta, \Phi)
$$

from which it follows that $C_{6}=4 /\left(77(65)^{1 / 2}\right), C_{4}=8 /\left(385(5)^{1 / 2}\right), C_{2}=2 / 105$, and $C_{0}=4 /\left(315(5)^{1 / 2}\right)$. The coefficient of $v_{1}(t)$ is

$$
\begin{aligned}
& \frac{16}{105(5)^{1 / 2}} Y_{40}(\Theta, \Phi)+\frac{8}{35} Y_{20}(\Theta, \Phi)+\frac{8}{45(5)^{1 / 2}} Y_{00}(\Theta, \Phi) \\
& \quad=C_{4}\left[\frac{22}{3}\right] Y_{40}(\Theta, \Phi)+C_{2}[12] Y_{20}(\Theta, \Phi)+C_{0}[14] Y_{00}(\Theta, \Phi)
\end{aligned}
$$

from which it follows that $\mu=38 / 3$ and $\mu^{\prime}=8$. Finally, the coefficient of $w_{0}(t)$ is

$$
\frac{8}{45} Y_{20}+\frac{4}{27(5)^{1 / 2}} Y_{00}=C_{2}\left[\frac{28}{3}\right] Y_{20}(\Theta, \Phi)+C_{0}\left[\frac{35}{3}\right] Y_{00}(\Theta, \Phi),
$$

whence $\lambda^{\prime}=4$. This completes the evaluation of the integral.

## RESULTS

(a) $d^{1}$ System, Crystal Field of Octahedral Symmetry

For a $d^{1}$ transition metal ion in a crystal field of octahedral symmetry, the theoretical Hamiltonian representing the various interactions we need consider is given by

$$
\mathscr{H}=-\frac{\hbar^{2} \nabla^{2}}{2 m_{\mathrm{e}}}-\frac{\mathrm{Z} e^{2}}{r}+\zeta \mathbf{l} \cdot \mathbf{s}+V(\mathbf{r})+\mu_{\mathrm{B}}(\mathbf{l}+2 \mathbf{s}) \cdot \mathbf{B}+\mathscr{H}_{\mathrm{hyperfine}},
$$

where $V(\mathbf{r})$ is the crystal field term, the strength of which is defined by the crystal field parameter $\Delta ; \mathscr{H}_{\text {hyperfine }}$ is the Hamiltonian of Eq. [1]; and the other terms have their usual meanings. Results are given for the contribution to the NMR shift for two cases, namely, (i) $\Delta=0$; and (ii) $\Delta \neq 0$.

## (i) Zero Crystal Field

When there is zero crystal field present, the ${ }^{2} \mathrm{D}$ ground-state level is split by spin-orbit coupling into two levels with $J$ values of $\frac{5}{2}$ and $\frac{3}{2}$ and with eigenvalues of $\zeta$ and $-\frac{3}{2} \zeta$, respectively. The contribution to the NMR shift is given by ${ }^{1}$

$$
\frac{\Delta B}{B}=-\frac{2}{75} \frac{\mu_{0}}{4 \pi} \frac{\mu_{\mathrm{B}}^{2}}{k T} \frac{\left[K_{0}+G_{0} \exp (5 \zeta / 2 k T)+M_{0}\{1-\exp (5 \zeta / 2 k T)\} k T / \zeta\right]}{3+2 \exp (5 \zeta / 2 k T)},
$$

where

$$
\begin{aligned}
& K_{0}=36 \beta^{3} e^{-t}\left(\frac{t^{4}}{108}+\frac{t^{3}}{3!}+\frac{t^{2}}{2!}+t+1\right), \\
& G_{0}=16 \beta^{3} e^{-t}\left(-\frac{t^{4}}{72}+\frac{t^{3}}{3!}+\frac{t^{2}}{2!}+t+1\right) \\
& M_{0}=\frac{4}{5} \beta^{3} e^{-t}\left(\frac{t^{4}}{18}+\frac{t^{3}}{3!}+\frac{t^{2}}{2!}+t+1\right),
\end{aligned}
$$

where $t=2 \beta R$. The condition of zero crystal field is reflected by the absence of any angular dependence of the final result for $\Delta B / B$. This must be so since in this case the system is isotropic.
${ }^{1}$ This result was previously given by Golding et al. (7), and is given here for completeness. Note that in their Eq. [6], $B_{0}$ is in error and should be

$$
B_{0}=-\frac{\exp (-2 \alpha)}{5 R^{3}}\left(\frac{32 \alpha^{7}}{27}+\frac{16 \alpha^{6}}{9}+\frac{8 \alpha^{5}}{3}+\frac{8 \alpha^{4}}{3}+\frac{4 \alpha^{3}}{3}\right)
$$

The NMR shift for $\mathbf{R}=\mathbf{0}$ is readily determined from the above. As $R \rightarrow 0$,

$$
\frac{\Delta B}{B} \rightarrow-\frac{2}{5}\left\langle r^{-3}\right\rangle \frac{\mu_{0}}{4 \pi} \frac{\mu_{\mathrm{B}}^{2}}{k T} \frac{\left[36+16 \exp (5 \zeta / 2 k T)+\frac{4}{5}\{1-\exp (5 \zeta / 2 k T)\} k T / \zeta\right]}{3+2 \exp (5 \zeta / 2 k T)},
$$

where $\left\langle r^{-3}\right\rangle=\beta^{3} / 15$.

## (ii) Nonzero Crystai Field

For the case of nonzero crystal field, the contribution to the NMR shift is given by

$$
\frac{\Delta B}{B}=\frac{2}{3} \frac{\mu_{0}}{4 \pi} \frac{\mu_{B}^{2}}{k T} \frac{\sum_{i=1}^{3}\left(A_{i}+B_{i} k T\right) \exp \left(-\varepsilon_{i} / k T\right)}{\sum_{i=1}^{3} \rho_{i} \exp \left(-\varepsilon_{i} / k T\right)}
$$

where

$$
\begin{aligned}
& \rho_{1}=\rho_{2}=2 \quad \text { and } \quad \rho_{3}=1 \\
& \varepsilon_{1}=-\frac{\zeta}{4}+\frac{\Delta}{10}+\frac{X}{2} \\
& \varepsilon_{2}=-\frac{\zeta}{4}+\frac{\Delta}{10}-\frac{X}{2} \\
& \varepsilon_{3}=\zeta-\frac{2}{5} \Delta,
\end{aligned}
$$

and

$$
X^{2}=\frac{25}{4} \zeta^{2}+\Delta \zeta+\Delta^{2}
$$

We shall express $A_{i}$ and $B_{i}$ using matrix notation. If we define

$$
\begin{aligned}
& a^{2}=\frac{1}{2}+\frac{1}{2}\left(\frac{5}{2} \zeta+\frac{\Delta}{5}\right) X^{-1} \\
& b^{2}=\frac{1}{2}-\frac{1}{2}\left(\frac{5}{2} \zeta+\frac{\Delta}{5}\right) X^{-1} \\
& a b=-\frac{6^{1 / 2}}{5} \Delta X^{-1}
\end{aligned}
$$

we may then define matrices $g_{m}^{(i)}$ and $h_{m}^{(i)}$ as shown in Tables 1 and 2, respectively. $A_{i}$ and $B_{i}$ are given by

$$
\begin{array}{ll}
A_{i}=\frac{1}{75} \sum_{m=1}^{5} a_{m} g_{m}^{(i)}, & i=1,2, \\
A_{3}=\frac{1}{3}\left(A_{0}+2 B_{0}-2 E_{0}\right), & \\
B_{i}=\frac{1}{75} \sum_{m=1}^{6} b_{m} h_{m}^{(i)}, & i=1,2,3
\end{array}
$$

TABLE 1
The Matrix Elements $g_{m}^{(i)}$

| $m$ | $i=1$ | $i=2$ |
| :--- | :--- | :--- |
| 1 | $a^{4}$ | $b^{4}$ |
| 2 | $(6)^{1 / 2} a^{3} b$ | $-(6)^{1 / 2} b^{3} a$ |
| 3 | $a^{2} b^{2}$ | $b^{2} a^{2}$ |
| 4 | $-(6)^{1 / 2} a b^{3}$ | $(6)^{1 / 2} b a^{3}$ |
| 5 | $b^{4}$ | $a^{4}$ |

where the coefficients $a_{m}$ and $b_{m}$ are given by

$$
\begin{aligned}
& \left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\left(\begin{array}{rrrrrr}
-32 & 44 & -12 & -36 & 4 & -132 \\
-\frac{82}{3} & \frac{124}{3} & -4 & 18 & \frac{44}{3} & -14 \\
-8 & 26 & 22 & 36 & 46 & 212 \\
-19 & 28 & -4 & 28 & 8 & -4 \\
18 & -36 & -12 & 24 & -36 & -72
\end{array}\right)\left(\begin{array}{l}
A_{0} \\
B_{0} \\
C_{0} \\
D_{0} \\
E_{0} \\
F_{0}
\end{array}\right), \\
& \left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6}
\end{array}\right)
\end{aligned}=\left(\begin{array}{rrrrr}
-14 & 8 & 1 & -12 & -32 \\
-16 & 52 & 94 & 72 & 92 \\
-424 \\
\frac{139}{3} & -\frac{208}{3} & 8 & -46 & -\frac{68}{3} \\
20 & 40 & -30 & 0 & 80 \\
120 \\
\frac{35}{3} & \frac{70}{3} & \frac{15}{2} & 0 & \frac{140}{3} \\
5 & 10 & 5 & 0 & -30 \\
5
\end{array}\right)\left(\begin{array}{l}
A_{0} \\
B_{0} \\
C_{0} \\
D_{0} \\
E_{0} \\
F_{0}
\end{array}\right),
$$

TABLE 2
The Matrix Elements $h_{m}^{(i)}$

| $m$ | $i=1$ | $i=2$ | $i=3$ |
| :---: | :---: | :---: | :---: |
| 1 | $\frac{a^{4}+b^{4}}{\varepsilon_{1}-\varepsilon_{2}}$ | $\frac{b^{4}+a^{4}}{\varepsilon_{2}-\varepsilon_{1}}$ | 0 |
| 2 | $\frac{a^{2} b^{2}}{\varepsilon_{1}-\varepsilon_{2}}$ | $\frac{b^{2} a^{2}}{\varepsilon_{2}-\varepsilon_{1}}$ | 0 |
| 3 | $\frac{(6)^{1 / 2} a b^{3}-(6)^{1 / 2} a^{3} b}{\varepsilon_{1}-\varepsilon_{2}}$ | $\frac{(6)^{1 / 2} a b^{3}-(6)^{1 / 2} a^{3} b}{\varepsilon_{2}-\varepsilon_{1}}$ | 0 |
| 4 | $\frac{a^{2}}{\varepsilon_{1}-\varepsilon_{3}}$ | $\frac{b^{2}}{\varepsilon_{2}-\varepsilon_{3}}$ | $\frac{a^{2}}{\varepsilon_{3}-\varepsilon_{1}}+\frac{b^{2}}{\varepsilon_{3}-\varepsilon_{2}}$ |
| 5 | $\frac{(6)^{1 / 2} a b}{\varepsilon_{1}-\varepsilon_{3}}$ | $-\frac{(6)^{1 / 2} a b}{\varepsilon_{2}-\varepsilon_{3}}$ | $\frac{(6)^{1 / 2} a b}{\varepsilon_{3}-\varepsilon_{1}}-\frac{(6)^{1 / 2} a b}{\varepsilon_{3}-\varepsilon_{2}}$ |
| 6 | $\frac{b^{2}}{\varepsilon_{1}-\varepsilon_{3}}$ | $\frac{a^{2}}{\varepsilon_{2}-\varepsilon_{3}}$ | $\frac{b^{2}}{\varepsilon_{3}-\varepsilon_{1}}+\frac{a^{2}}{\varepsilon_{3}-\varepsilon_{2}}$ |

and the six functions $A_{0}, B_{0}, C_{0}, D_{0}, E_{0}$, and $F_{0}$ which are functions of the vector $\mathbf{R}$ are defined in terms of the molecular hyperfine integrals by

$$
\begin{aligned}
A_{0}(\mathbf{R})= & \langle\xi| T_{x x}|\xi\rangle+\langle\eta| T_{y y}|\eta\rangle+\langle\zeta| T_{z z}|\zeta\rangle, \\
B_{0}(\mathbf{R})= & \langle\xi| T_{x y}|\eta\rangle+\langle\eta| T_{y z}|\zeta\rangle+\langle\zeta| T_{z x}|\xi\rangle, \\
C_{0}(\mathbf{R})= & 3^{1 / 2}\langle\eta| T_{z x}|\theta\rangle+3^{1 / 2}\langle\xi| T_{y z}|\theta\rangle-2(3)^{1 / 2}\langle\zeta| T_{x y}|\theta\rangle+3\langle\eta| T_{z x}|\varepsilon\rangle-3\langle\xi| T_{y z}|\varepsilon\rangle, \\
D_{0}(\mathbf{R})= & \frac{3}{4}\langle\varepsilon| T_{z z}|\varepsilon\rangle-\frac{3}{4}\langle\theta| T_{z z}|\theta\rangle+\frac{3^{1 / 2}}{2}\langle\theta| T_{x x}|\varepsilon\rangle-\frac{3^{1 / 2}}{2}\langle\theta| T_{y y}|\varepsilon\rangle, \\
E_{0}(\mathbf{R})= & i\left[\langle\zeta| l_{\mathrm{N} x} / r_{\mathrm{N}}^{3}|\eta\rangle+\langle\xi| l_{\mathrm{N} y} / r_{\mathrm{N}}^{3}|\zeta\rangle+\langle\eta| l_{\mathrm{N} z} / r_{\mathrm{N}}^{3}|\xi\rangle\right], \\
F_{0}(\mathbf{R})= & i\left[\frac{3^{1 / 2}}{2}\langle\xi| l_{\mathrm{N} x} / r_{\mathrm{N}}^{3}|\theta\rangle+\frac{1}{2}\langle\xi| l_{\mathrm{N} x} / r_{\mathrm{N}}^{3}|\varepsilon\rangle-\frac{3^{1 / 2}}{2}\langle\eta| l_{\mathrm{N} y} / r_{\mathrm{N}}^{3}|\theta\rangle\right. \\
= & \left.+\frac{1}{2}\langle\eta| l_{\mathrm{N} y} / r_{\mathrm{N}}^{3}|\varepsilon\rangle-\langle\zeta| l_{\mathrm{N} z} / r_{\mathrm{N}}^{3}|\varepsilon\rangle\right] .
\end{aligned}
$$

The molecular hyperfine integrals for $A_{0}, B_{0}$, and $E_{0}$ were given by us in Ref. (4); those for $C_{0}, D_{0}$, and $F_{0}$ are listed in Appendix B. In terms of their specific radial and angular dependences, these six functions are given by

$$
\begin{aligned}
A_{0}(\mathbf{R})= & -\frac{32}{385}\left(\frac{\pi}{26}\right)^{1 / 2} Z_{6}(\Theta, \Phi) S_{1}(R)+\frac{16}{825}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) F_{7}(R) \\
& -\frac{16 \pi^{1 / 2}}{525} Z_{0}(\Theta, \Phi) N_{1}(R), \\
B_{0}(\mathbf{R})= & -\frac{32}{385}\left(\frac{\pi}{26}\right)^{1 / 2} Z_{6}(\Theta, \Phi) S_{1}(R)-\frac{24}{275}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) F_{12}(R) \\
& +\frac{4 \pi^{1 / 2}}{175} Z_{0}(\Theta, \Phi) N_{1}(R), \\
C_{0}(\mathbf{R})= & \frac{96}{385}\left(\frac{\pi}{26}\right)^{1 / 2} Z_{6}(\Theta, \Phi) S_{1}(R)-\frac{16}{275}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) F_{23}(R) \\
& +\frac{16 \pi^{1 / 2}}{175} Z_{0}(\Theta, \Phi) N_{1}(R), \\
D_{0}(\mathbf{R})= & \frac{24}{385}\left(\frac{\pi}{26}\right)^{1 / 2} Z_{6}(\Theta, \Phi) S_{1}(R)-\frac{48}{275}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) F_{12}(R) \\
& -\frac{16 \pi^{1 / 2}}{525} Z_{0}(\Theta, \Phi) N_{1}(R), \\
E_{0}(\mathbf{R})= & -\frac{8}{15}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) f_{1}(R)+\frac{4 \pi^{1 / 2}}{15} Z_{0}(\Theta, \Phi) n_{1}(R), \\
F_{0}(\mathbf{R})= & \frac{4}{15}\left(\frac{\pi}{21}\right)^{1 / 2} Z_{4}(\Theta, \Phi) f_{1}(R)+\frac{8 \pi^{1 / 2}}{15} Z_{0}(\Theta, \Phi) n_{1}(R) .
\end{aligned}
$$

The three functions $Z_{0}, Z_{4}$, and $Z_{6}$ have been defined as the appropriate combinations of the spherical harmonics $Y_{l m}(\Theta, \Phi)$ that transform as the irreducible representation $A_{1} a_{1}$ of group $O$ for $l=0,4$, and 6:

$$
\begin{aligned}
& Z_{6}(\Theta, \Phi)=\frac{7^{1 / 2}}{4} Y_{64}(\Theta, \Phi)-\frac{1}{2(2)^{1 / 2}} Y_{60}(\Theta, \Phi)+\frac{7^{1 / 2}}{4} Y_{6-4}(\Theta, \Phi) \\
& Z_{4}(\Theta, \Phi)=\frac{1}{2}\left(\frac{5}{6}\right)^{1 / 2} Y_{44}(\Theta, \Phi)+\frac{1}{2}\left(\frac{7}{3}\right)^{1 / 2} Y_{40}(\Theta, \Phi)+\frac{1}{2}\left(\frac{5}{6}\right)^{1 / 2} Y_{4-4}(\Theta, \Phi) \\
& Z_{0}(\Theta, \Phi)=Y_{00}(\Theta, \Phi)
\end{aligned}
$$

The functions of radial dependence are given in Appendix A, with $F_{7}=F(-24)$, $F_{12}=F(38 / 3)$, and $F_{23}=F(31)$.
(b) $d^{2}$ System, Octahedral Symmetry

For a $d^{2}$ system in a strong crystal field of octahedral symmetry the Hamiltonian

$$
\mathscr{H}=\sum_{i=1}^{2}\left\{-\frac{\hbar^{2} \nabla_{i}^{2}}{2 m_{\mathrm{e}}}-\frac{Z e^{2}}{r_{i}}+V\left(\mathbf{r}_{i}\right)\right\}+\frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

results in a ${ }^{3} T_{1}$ ground state ( 8 ) whose relative energy for the $t_{2}^{2}$ configuration is given by

$$
E\left({ }^{3} T_{1}\right)=-\frac{4}{5} \Delta+A-5 B
$$

where $A$ and $B$ are the Racah parameters and $\Delta$ is the crystal field parameter. (Mixing due to the Coulomb repulsion interaction between the ${ }^{3} T_{1}$ state of the $t_{2}^{2}$ configuration and the ${ }^{3} T_{1}$ state of the $e t_{2}$ configuration is considered in Section (c).) The spin-orbit coupling interaction splits this ${ }^{3} T_{1}$ term into three levels $E_{1}, E_{2}$, and $E_{3}$.

The pseudocontact contribution to the NMR shift is given by

$$
\frac{\Delta B}{B}=\frac{2}{3} \frac{\mu_{0}}{4 \pi} \frac{\mu_{\mathrm{B}}^{2}}{k T} \frac{\sum_{i=1}^{3}\left(A_{i}+B_{i} k T / \zeta\right) \exp \left(-E_{i} / k T\right)}{\sum_{i=1}^{3} \rho_{i} \exp \left(-E_{i} / k T\right)}
$$

where

$$
\begin{aligned}
& E_{1}=\zeta \\
& E_{2}=\frac{1}{2} \zeta \\
& E_{3}=-\frac{1}{2} \zeta
\end{aligned}
$$

$\rho_{1}=1, \rho_{2}=3, \rho_{3}=5$, and

$$
\begin{aligned}
& A_{1}=0 \\
& A_{2}=\frac{1}{2} A_{0}+B_{0}+\frac{1}{2} E_{0}, \\
& A_{3}=-\frac{1}{2} A_{0}-B_{0}+\frac{5}{2} E_{0}, \\
& B_{1}=4 A_{0}+8 B_{0}+8 E_{0},
\end{aligned}
$$

$$
\begin{aligned}
& B_{2}=-6 A_{0}-12 B_{0}-3 E_{0} \\
& B_{3}=2 A_{0}+4 B_{0}-5 E_{0}
\end{aligned}
$$

where $A_{0}, B_{0}$, and $E_{0}$ are the functions of $\mathbf{R}$ defined above.

## (c) $d^{2}$ System, Incorporating Coulomb Repulsion Mixing

The results given in the previous section for a $d^{2}$ system in a strong crystal field of octahedral symmetry were extended to incorporate mixing due to the Coulomb repulsion interaction between the ${ }^{3} T_{1}$ state of the $t_{2}^{2}$ configuration and the ${ }^{3} T_{1}$ state of the $e t_{2}$ configuration. Wavefunctions of the form

$$
|\psi\rangle=a\left|t_{2}^{2}:^{3} T_{1}\right\rangle+b\left|e t_{2}:{ }^{3} T_{1}\right\rangle
$$




Fig. 2. The $\Phi$ dependence of $\Delta B / B$ (ppm) for a $d^{1}$ system in a crystal field of octahedral symmetry where (a) $\Delta=500 \mathrm{~cm}^{-1}$; and (b) $\Delta=5000 \mathrm{~cm}^{-1}$. The NMR nucleus is in the $x y$ plane 0.2 nm from the $d$-electron-bearing nucleus ( $T=300 K$ ).

TABLE 3
The Variation of the NMR Shift with Respect to the Crystal Field Parameter, $\Delta$, FOR A $d^{1}$ System in a Crystal Field of Octa-

HEDRAL Symmetry

| $\Delta$ <br> $\left(\mathrm{cm}^{-1}\right)$ | $\Delta B / \boldsymbol{B}(\mathrm{ppm})$ <br> at $\Phi=0^{\circ}$ | $\Delta B / B(\mathrm{ppm})$ <br> at $\Phi=45^{\circ}$ |
| ---: | :---: | :---: |
| 0 | -38.40 | -38.40 |
| 250 | -51.75 | -31.40 |
| 500 | -62.07 | -21.63 |
| 750 | -69.00 | -13.23 |
| 1,000 | -73.63 | -6.97 |
| 1,500 | -79.19 | 0.87 |
| 2,500 | -84.36 | 8.01 |
| 5,000 | -88.47 | 13.46 |
| 7,500 | -89.86 | 15.22 |
| 10,000 | -90.54 | 16.08 |
| 12,500 | -90.95 | 16.56 |
| 15,000 | -91.22 | 16.92 |
| 25,000 | -91.75 | 17.58 |
| 50,000 | -92.15 | 18.06 |

were used, with the coefficients $a$ and $b$ calculated from the matrix (9)

| ${ }^{3} T_{1}$ | $t_{2}^{2}$ | $e t_{2}$ |
| :---: | :---: | :---: |
| $t_{2}^{2}$ | $A-5 B-\frac{4}{5} \Delta$ | $6 B$ |
| $e t_{2}$ | $6 B$ | $A+4 B+\frac{1}{5} \Delta$ |

The spin-orbit coupling interaction splits the ${ }^{3} T_{1}$ ground-state term into three levels with relative values for the energy of

$$
\begin{aligned}
& E_{1}=\zeta^{\prime \prime}, \\
& E_{2}=\frac{1}{2} \zeta^{\prime \prime}, \\
& E_{3}=-\frac{1}{2} \zeta^{\prime \prime},
\end{aligned}
$$

where

$$
\zeta^{\prime \prime}=\left(a^{2}-2 a b-\frac{1}{2} b^{2}\right) \zeta .
$$

The contribution to the shift is given by

$$
\frac{\Delta B}{B}=\frac{2}{3} \frac{\mu_{0}}{4 \pi} \frac{\mu_{\mathrm{B}}^{2}}{k T} \frac{\sum_{i=1}^{3}\left\{A_{i} f(a, b)+B_{i} g(a, b) k T / \xi^{\prime \prime}\right\} \exp \left(-E_{i} / k T\right)}{\sum_{i=1}^{3} \rho_{i} \exp \left(-E_{i} / k T\right)},
$$

where $\rho_{1}=1, \rho_{2}=3, \rho_{3}=5$, and

$$
\begin{aligned}
& f(a, b)=a^{2}-\frac{2}{3} a b+\frac{1}{2} b^{2}, \\
& g(a, b)=a^{2}+2 a b+\frac{5}{2} b^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{1}=0, \\
& A_{2}=\frac{1}{2} k(a, b, \mathbf{R})+\frac{1}{2} m(a, b, \mathbf{R}), \\
& A_{3}=-\frac{1}{2} k(a, b, \mathbf{R})+\frac{5}{2} m(a, b, \mathbf{R}), \\
& B_{1}=4 k(a, b, \mathbf{R})+8 m(a, b, \mathbf{R}), \\
& B_{2}=-6 k(a, b, \mathbf{R})-3 m(a, b, \mathbf{R}), \\
& B_{3}=2 k(a, b, \mathbf{R})-5 m(a, b, \mathbf{R}),
\end{aligned}
$$

where

$$
\begin{aligned}
& k(a, b, \mathbf{R})=a^{2}\left(A_{0}+2 B_{0}\right)+a b C_{0}+b^{2}\left(-A_{0}+B_{0}-D_{0}\right) \\
& m(a, b, \mathbf{R})=a^{2} E_{0}-a b F_{0}-\frac{1}{2} b^{2} E_{0} .
\end{aligned}
$$



Fig. 3. The $\Phi$ dependence of $\Delta B / B(\mathrm{ppm})$ for a $d^{2}$ system in a strong crystal field of octahedral symmetry for the case when the NMR nucleus is in the $x y$ plane 0.2 nm from the $d$-electron-bearing nucleus for the two cases: (a) $t_{2}^{2}$ configuration only; and (b) $t_{2}^{2}$ and $e t_{2}$ configurations ( $T=300 \mathrm{~K}$ ).

## DISCUSSION

To illustrate the results for a $d^{1}$ system, $\Delta B / B$ is plotted in Fig. 2 as a function of the angle $\Phi$ for two values of the crystal field parameter $\Delta: \Delta=500 \mathrm{~cm}^{-1}$ and $\Delta=5000 \mathrm{~cm}^{-1}$. The central metal ion is taken to lie in the $x y$ plane 0.2 nm from the NMR nucleus. The case of a $\mathrm{Ti}^{3+}$ ion is considered, for which the value of the spin-orbit coupling constant, $\zeta$ (calculated from the appropriate spectroscopic data (10)), is $\zeta=154 \mathrm{~cm}^{-1}$, and from Slater's rules $\beta=4 /\left(3 a_{0}\right)$. In the $x y$ plane $\Delta B / B$ has a sinusoidal dependence on $\Phi$, varying between -62.07 and -21.63 ppm for $\Delta=$ $500 \mathrm{~cm}^{-1}$, and between -88.47 and 13.46 ppm for $\Delta=5000 \mathrm{~cm}^{-1}$. Thus, for intermediate strengths of the crystal field, we see that there is a noticeable dependence of the NMR shift $\Delta B$ upon the crystal field parameter $\Delta$. This is further shown in Table 3 , where $\Delta B / B$ is given for a range of values of $\Delta$. The central metal ion is once more


Fig. 4. The isoshielding diagram for a $d^{2}$ system ( $t_{2}^{2}$ and $e t_{2}$ configurations considered) for the case when the NMR nucleus lies in the $x y$ plane. The scale on the axes is in units of $0.1 \mathrm{~nm}(T=300 \mathrm{~K})$.
chosen to lie in the $x y$ plane 0.2 nm from the NMR nucleus. The second column contains the minimum value of $\Delta B / B$ (at $\Phi=0^{\circ}$ ) and the third column the maximum (at $\Phi=45^{\circ}$ ). For values of $\Delta$ larger than $10,000 \mathrm{~cm}^{-1}$, the change in the NMR shift with respect to $\Delta$ is slight.

To illustrate the results for the $d^{2}$ system, we consider the case of a $\mathrm{V}^{3+}$ ion, in which $\zeta=210 \mathrm{~cm}^{-1}(10)$ and $\beta=1.55 / a_{0}$. The quantity $\Delta B / B$ is plotted in Fig. 3 as a function of the angle $\Phi$ for the case when the central metal ion is in the $x y$ plane 0.2 nm from the NMR nucleus. Figure 3a gives the results for the case when Coulomb repulsion mixing is ignored, Fig. 3b for the case when it is incorporated into the calculations. In the latter case the crystal field parameter $\Delta$ is taken to be $20,000 \mathrm{~cm}^{-1}$ and the value of the Racah parameter $B$ as $B=860 \mathrm{~cm}^{-1}(9)$. Diagonalizing the matrix [4] yielded values of $a=0.9842$ and $b=-0.1771$ for the mixing coefficients. Even though the amount of mixing is quite small, a comparison of


FIG. 5. The isoshielding diagram for a $d t_{2}^{2}$ system for the case when the NMR nucleus lies in the $x y$ plane. The scale on the axes is in units of $0.1 \mathrm{~nm}(T=300 \mathrm{~K})$.

Figss. $3 a$ and $b$ shows that there has been a marked effect on the value of the NMR shift $\Delta B$ by incorporating the effect of Coulomb repulsion mixing.

Finally, we present in Figs. 4 and 5 isoshielding diagrams for a $d^{2}$ system for the case when the NMR nucleus lies in the $x y$ plane. The values of $\zeta, \beta, \Delta$, and the Racah parameter $B$ were chosen as above. An isoshielding diagram is a contour map in which the contours are lines of equal chemical shifts $(5,11)$. Figure 4 gives the results for the case when Coulomb repulsion mixing is incorporated, Fig. 5 for that when it is not, the $d t_{2}^{2}$ system. There are regions where $\Delta B$ becomes slightly positive, of the order of 0.45 ppm in Fig. 5. A comparison with an isoshielding diagram for a $d^{1}$ system in a strong crystal field of octahedral symmetry-see Ref. (5), in which there are "lobes" in the map where $\Delta B$ reaches 50 ppm-highlights the dissimilarities that may occur in the isoshielding diagrams of three seemingly similar functions, that is, those of the form

$$
\Delta B / B=\alpha Z_{0}(\Theta, \Phi)+\beta Z_{4}(\Theta, \Phi)+\delta Z_{6}(\Theta, \Phi)
$$

## APPENDIX A: THE RADIAL SERIES

For integrals of $l_{\mathrm{N} \alpha} / r_{\mathrm{N}}^{3}$ define

$$
\begin{aligned}
f_{1} & =v_{1}+3 w_{2}+3 x_{3}+y_{4} \\
n_{1} & =v_{1}+\frac{1}{3}\left(5 w_{0}+4 w_{2}\right)+3 x_{1}+y_{0} \\
t(\mu) & =v_{1}+(3-A) w_{0}+A w_{2}+(3-B) x_{1}+B x_{3}+y_{2}
\end{aligned}
$$

where $A=\mu$ and $B=\frac{1}{5}(3 \mu-1)$. The explicit forms of the radial series in terms of $t=2 \beta R$ are

$$
\begin{aligned}
S_{1}= & \frac{16,632,000 \beta^{3}}{t^{7}}\left[1-e^{-t} \sum_{n=0}^{11} t^{n} / n!\right], \\
F(\mu)= & \frac{16,800 \beta^{3}}{t^{5}}\left[(\mu-9)-e^{-t}\left\{\frac{t^{9}}{8!}+(\mu-9) \sum_{n=0}^{8} t^{n} / n!\right\}\right], \\
T\left(\mu^{\prime}, \lambda^{\prime}\right)= & \frac{60 \beta^{3}}{t^{3}}\left[\left(7 \lambda^{\prime}-3 \mu^{\prime}+3\right)\right. \\
& \left.-e^{-t}\left\{\frac{t^{7}}{144}+\frac{\left(\mu^{\prime}-9\right)}{144} t^{6}+\frac{\left(7 \lambda^{\prime}-2 \mu^{\prime}-6\right)}{144} t^{5}+\left(7 \lambda^{\prime}-3 \mu^{\prime}+3\right) \sum_{n-0}^{4} t^{n} / n!\right\}\right], \\
N_{1}= & \frac{15 \beta^{3}}{2}\left[e^{-t}\left\{-\frac{t^{4}}{18}+\frac{t^{3}}{3!}+\frac{t^{2}}{2!}+t+1\right\}\right], \\
f_{1}= & -\frac{10,080 \beta^{3}}{t^{5}}\left[1-e^{-t} \sum_{n=0}^{8} t^{n} / n!\right], \\
t(\mu)= & \frac{36 \beta^{3}}{t^{3}}\left[(2-3 \mu)-e^{-t}\left\{-\frac{t^{6}}{144}+\frac{(1-3 \mu)}{144} t^{5}+(2-3 \mu) \sum_{n=0}^{4} t^{n} / n!\right\}\right], \\
n_{1}= & \frac{3 \beta^{3}}{2}\left[e^{-t}\left\{\frac{t^{3}}{3!}+\frac{t^{2}}{2!}+t+1\right\}\right] .
\end{aligned}
$$

The appearance of the incomplete factorial function,

$$
i_{\mathrm{N}}(t)=N!\left[1-e^{-t} \sum_{n=0}^{N} t^{n} / n!\right],
$$

ties in with results of Gottlieb et al. (12).

APPENDIX B: SOME MOLECULAR HYPERFINE INTEGRALS INVOLVING THE e ORBITALS

Employing the notation of Griffith (8) define

$$
\begin{aligned}
Z_{L 0}(\Theta, \Phi) & =Y_{L 0}(\Theta, \Phi) \\
Z_{L M}^{(c)}(\Theta, \Phi) & =\frac{1}{2^{1 / 2}}\left\{Y_{L-M}(\Theta, \Phi)+Y_{L-M}^{*}(\Theta, \Phi)\right\} \\
Z_{L M}^{(s)}(\Theta, \Phi) & =\frac{i}{2^{1 / 2}}\left\{Y_{L-M}(\Theta, \Phi)-Y_{L-M}^{*}(\Theta, \Phi)\right\}
\end{aligned}
$$

We also require one additional radial series defined by

$$
T_{4}=v_{1}-v_{3}+(1 / 21)\left(49 w_{0}-40 w_{2}-9 w_{4}\right)+x_{1}-x_{3} .
$$

The additional molecular hyperfine integrals involving the $e$ orbitals are

$$
\begin{aligned}
\langle\xi| T_{y z}|\varepsilon\rangle= & -\frac{8}{165}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)-\frac{16}{165}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi) \\
& -\frac{8}{1155}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)-\frac{4}{165}\left(\frac{\pi}{35}\right)^{1 / 2} F(9) Z_{44}^{(c)}(\Theta, \Phi) \\
& +\frac{4}{231}\left(\frac{\pi}{5}\right)^{1 / 2} F\left(\frac{67}{5}\right) Z_{42}^{(c)}(\Theta, \Phi)+\frac{4 \pi^{1 / 2}}{825} F\left(\frac{107}{7}\right) Z_{40}(\Theta, \Phi) \\
& +\frac{4}{105}\left(\frac{\pi}{15}\right)^{1 / 2} T\left(5, \frac{12}{7}\right) Z_{22}^{(c)}(\Theta, \Phi)+\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T_{4} Z_{20}(\Theta, \Phi) \\
& -\frac{4 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi), \\
\langle\eta| T_{z x}|\varepsilon\rangle= & \frac{8}{165}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)-\frac{16}{165}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi) \\
& +\frac{8}{1155}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)+\frac{4}{165}\left(\frac{\pi}{35}\right)^{1 / 2} F(9) Z_{44}^{(c)}(\Theta, \Phi) \\
& +\frac{4}{231}\left(\frac{\pi}{5}\right)^{1 / 2} F\left(\frac{67}{5}\right) Z_{42}^{(c)}(\Theta, \Phi)-\frac{4 \pi^{1 / 2}}{825} F\left(\frac{107}{7}\right) Z_{40}(\Theta, \Phi)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{4}{105}\left(\frac{\pi}{15}\right)^{1 / 2} T\left(5, \frac{12}{7}\right) Z_{22}^{(c)}(\Theta, \Phi)-\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T_{4} Z_{20}(\Theta, \Phi) \\
& +\frac{4 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi), \\
& \langle\eta| T_{z x}|\theta\rangle=\frac{1}{3^{1 / 2}}\left[\frac{16}{55}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi)-\frac{16}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)\right. \\
& +\frac{4}{165}\left(\frac{\pi}{5}\right)^{1 / 2} F\left(\frac{85}{7}\right) Z_{42}^{(c)}(\Theta, \Phi)-\frac{8 \pi^{1 / 2}}{5775} F(31) Z_{40}(\Theta, \Phi) \\
& -\frac{4}{35}\left(\frac{\pi}{15}\right)^{1 / 2} T_{4} Z_{22}^{(c)}(\Theta, \Phi) \\
& \left.+\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(3, \frac{6}{7}\right) Z_{20}(\Theta, \Phi)+\frac{4 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi)\right], \\
& \langle\xi| T_{y z}|\theta\rangle=\frac{1}{3^{1 / 2}}\left[-\frac{16}{55}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi)-\frac{16}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)\right. \\
& -\frac{4}{165}\left(\frac{\pi}{5}\right)^{1 / 2} F\left(\frac{85}{7}\right) Z_{42}^{(c)}(\Theta, \Phi)-\frac{8 \pi^{1 / 2}}{5775} F(31) Z_{40}(\Theta, \Phi) \\
& +\frac{4}{35}\left(\frac{\pi}{15}\right)^{1 / 2} T_{4} Z_{22}^{(\mathrm{c})}(\Theta, \Phi)+\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(3, \frac{6}{7}\right) Z_{20}(\Theta, \Phi) \\
& \left.+\frac{4 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi)\right], \\
& \langle\zeta| T_{x y}|\theta\rangle=\frac{1}{3^{1 / 2}}\left[-\frac{4}{55}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)+\frac{4}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)\right. \\
& +\frac{16}{165}\left(\frac{\pi}{35}\right)^{1 / 2} F\left(\frac{29}{2}\right) Z_{44}^{(c)}(\Theta, \Phi)-\frac{64 \pi^{1 / 2}}{5775} F\left(\frac{83}{8}\right) Z_{40}(\Theta, \Phi) \\
& \left.+\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(6, \frac{15}{7}\right) Z_{20}(\Theta, \Phi)-\frac{8 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi)\right], \\
& \langle\theta| T_{x x}|\varepsilon\rangle=\frac{1}{3^{1 / 2}}\left[\frac{4}{55}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)-\frac{8}{55}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi)\right. \\
& +\frac{4}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)-\frac{16}{165}\left(\frac{\pi}{35}\right)^{1 / 2} F\left(\frac{29}{2}\right) Z_{44}^{(c)}(\Theta, \Phi) \\
& +\frac{8}{1155}\left(\frac{\pi}{5}\right)^{1 / 2} F(20) Z_{42}^{(c)}(\Theta, \Phi)-\frac{64 \pi^{1 / 2}}{5775} F\left(\frac{83}{8}\right) Z_{40}(\Theta, \Phi) \\
& -\frac{4}{105}\left(\frac{\pi}{15}\right)^{1 / 2} T\left(6, \frac{15}{7}\right) Z_{22}^{(c)}(\Theta, \Phi)+\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(6, \frac{15}{7}\right) Z_{20}(\Theta, \Phi) \\
& \left.-\frac{8 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi)\right],
\end{aligned}
$$

$$
\begin{aligned}
& \langle\theta| T_{y y}|\varepsilon\rangle=\frac{1}{3^{1 / 3}}\left[-\frac{4}{55}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)-\frac{8}{55}\left(\frac{2 \pi}{1365}\right)^{1 / 2} S_{1} Z_{62}^{(c)}(\Theta, \Phi)\right. \\
& -\frac{4}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)+\frac{16}{165}\left(\frac{\pi}{35}\right)^{1 / 2} F\left(\frac{29}{2}\right) Z_{44}^{(c)}(\Theta, \Phi) \\
& +\frac{8}{1155}\left(\frac{\pi}{5}\right)^{1 / 2} F(20) Z_{42}^{(c)}(\Theta, \Phi)+\frac{64 \pi^{1 / 2}}{5775} F\left(\frac{83}{8}\right) Z_{40}(\Theta, \Phi) \\
& -\frac{4}{105}\left(\frac{\pi}{15}\right)^{1 / 2} T\left(6, \frac{15}{7}\right) Z_{22}^{(c)}(\Theta, \Phi)-\frac{4}{105}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(6, \frac{15}{7}\right) Z_{20}(\Theta, \Phi) \\
& \left.+\frac{8 \pi^{1 / 2}}{525} N_{1} Z_{00}(\Theta, \Phi)\right] \text {, } \\
& \langle\theta| T_{z z}|\theta\rangle=\frac{16}{385}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi)+\frac{32 \pi^{1 / 2}}{1925} F\left(\frac{38}{3}\right) Z_{40}(\Theta, \Phi) \\
& +\frac{8}{108}\left(\frac{\pi}{5}\right)^{1 / 2} T(8,4) Z_{20}(\Theta, \Phi)+\frac{16 \pi^{1 / 2}}{1575} N_{1} Z_{00}(\Theta, \Phi), \\
& \langle\varepsilon| T_{z z}|\varepsilon\rangle=\frac{8}{165}\left(\frac{\pi}{91}\right)^{1 / 2} S_{1} Z_{64}^{(c)}(\Theta, \Phi)+\frac{8}{1155}\left(\frac{\pi}{13}\right)^{1 / 2} S_{1} Z_{60}(\Theta, \Phi) \\
& -\frac{32}{495}\left(\frac{\pi}{35}\right)^{1 / 2} F(9) Z_{44}^{(\mathfrak{c})}(\Theta, \Phi)-\frac{128 \pi^{1 / 2}}{17325} F\left(\frac{69}{4}\right) Z_{40}(\Theta, \Phi) \\
& +\frac{8}{315}\left(\frac{\pi}{5}\right)^{1 / 2} T\left(12, \frac{54}{7}\right) Z_{20}(\Theta, \Phi)-\frac{16 \pi^{1 / 2}}{1575} N_{1} Z_{00}(\Theta, \Phi), \\
& i\langle\zeta| l_{\mathrm{N} \mathrm{z}} / r_{\mathrm{N}}^{3}|\varepsilon\rangle=-\frac{8 \pi^{1 / 2}}{315} f_{1} Z_{40}(\Theta, \Phi)+\frac{16}{63}\left(\frac{\pi}{5}\right)^{1 / 2} t\left(\frac{11}{6}\right) Z_{20}(\Theta, \Phi) \\
& -\frac{8 \pi^{1 / 2}}{45} n_{1} Z_{00}(\Theta, \Phi), \\
& i\langle\xi| l_{\mathrm{N} x} / r_{\mathrm{N}}^{3}|\varepsilon\rangle=\frac{2}{9}\left(\frac{\pi}{35}\right)^{1 / 2} f_{1} Z_{44}^{(c)}(\Theta, \Phi)+\frac{2}{63}\left(\frac{\pi}{5}\right)^{1 / 2} f_{1} Z_{42}^{(c)}(\Theta, \Phi)-\frac{2 \pi^{1 / 2}}{105} f_{1} Z_{40}(\Theta, \Phi) \\
& -\frac{2}{7}\left(\frac{\pi}{15}\right)^{1 / 2} t\left(\frac{13}{9}\right) Z_{22}^{(c)}(\Theta, \Phi)-\frac{2}{63}\left(\frac{\pi}{5}\right)^{1 / 2} t\left(-\frac{5}{3}\right) Z_{20}(\Theta, \Phi) \\
& +\frac{4 \pi^{1 / 2}}{45} n_{1} Z_{00}(\Theta, \Phi), \\
& i\langle\eta| l_{\mathrm{N} y} / r_{\mathrm{N}}^{3}|\varepsilon\rangle=\frac{2}{9}\left(\frac{\pi}{35}\right)^{1 / 2} f_{1} Z_{44}^{(c)}(\Theta, \Phi)-\frac{2}{63}\left(\frac{\pi}{5}\right)^{1 / 2} f_{1} Z_{42}^{(c)}(\Theta, \Phi)-\frac{2 \pi^{1 / 2}}{105} f_{1} Z_{40}(\Theta, \Phi) \\
& +\frac{2}{7}\left(\frac{\pi}{15}\right)^{1 / 2} t\left(\frac{13}{9}\right) Z_{22}^{(c)}(\Theta, \Phi)-\frac{2}{63}\left(\frac{\pi}{5}\right)^{1 / 2} t\left(-\frac{5}{3}\right) Z_{20}(\Theta, \Phi) \\
& +\frac{4 \pi^{1 / 2}}{45} n_{1} Z_{00}(\Theta, \Phi),
\end{aligned}
$$

$$
\begin{aligned}
i\langle\xi| l_{\mathrm{N} x} / r_{\mathrm{N}}^{3}|\theta\rangle= & \frac{1}{3^{1 / 2}}\left[-\frac{2}{21}\left(\frac{\pi}{5}\right)^{1 / 2} f_{1} Z_{42}^{(c)}(\Theta, \Phi)+\frac{4 \pi^{1 / 2}}{105} f_{1} Z_{40}(\Theta, \Phi)\right. \\
& -\frac{10}{21}\left(\frac{\pi}{15}\right)^{1 / 2} t\left(\frac{1}{15}\right) Z_{22}^{(c)}(\Theta, \Phi)+\frac{2}{7}\left(\frac{\pi}{5}\right)^{1 / 2} t\left(\frac{13}{9}\right) Z_{20}(\Theta, \Phi) \\
& \left.+\frac{4 \pi^{1 / 2}}{15} n_{1} Z_{00}(\Theta, \Phi)\right] \\
i\langle\eta| l_{\mathrm{N} y} / r_{\mathrm{N}}^{3}|\theta\rangle= & \frac{1}{3^{1 / 2}}\left[-\frac{2}{21}\left(\frac{\pi}{5}\right)^{1 / 2} f_{1} Z_{42}^{(c)}(\Theta, \Phi)-\frac{4 \pi^{1 / 2}}{105} f_{1} Z_{40}(\Theta, \Phi)\right. \\
& -\frac{10}{21}\left(\frac{\pi}{15}\right)^{1 / 2} t\left(\frac{1}{15}\right) Z_{22}^{(c)}(\Theta, \Phi)-\frac{2}{7}\left(\frac{\pi}{5}\right)^{1 / 2} t\left(\frac{13}{9}\right) Z_{20}(\Theta, \Phi) \\
& \left.-\frac{4 \pi^{1 / 2}}{15} n_{1} Z_{00}(\Theta, \Phi)\right] .
\end{aligned}
$$

## REFERENCES

1. A. D. Buckingham and P. J. Stiles, Mol. Phys. 24, 99 (1972).
2. H. M. McConnell, J. Chem. Phys. 27, 226 (1957).
3. R. J. Kurland and B. R. McGarvey, J. Magn. Reson. 2, 286 (1970).
4. R. M. Golding and L. C. Stubbs, Proc. Roy. Soc. Ser. A. 354, 223 (1977).
5. R. M. Golding and L. C. Stubbs, J. Magn. Reson. 33, 627 (1979).
6. P. J. Stiles, Mol. Phys. 27, 501 (1974).
7. R. M. Golding, R. O. Pascual, amd L. C. Stubbs, Mol. Phys. 31, 1933 (1976).
8. J. S. Griffith, "The Theory of Transition Metal Ions," Cambridge Univ. Press, London/New York, 1961.
9. R. M. Golding, "Applied Wave Mechanics," Van Nostrand, London, 1969.
10. C. E. Moore, "Atomic Energy Levels," Vol. I, Circ. No. 467, Nat. Bur. Stand. USA, Washington, D.C., 1949.
11. J. P. Riley and W. T. Raynes, Mol. Phys. 33, 619 (1977).
12. H. P. W. Gottlieb, M. Barfield, and D. M. Doddrell, J. Chem. Phys. 67, 3785 (1977).

[^0]:    * Present address: Australian National Antarctic Research Expedition, Mawson, East Antarctica.

