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This paper is an extension of our work in the evaluation of NMR shifts in paramag-
netic transition metal ions using a non-multipole expansion technique. For the first time
we present the NMR shifts for a d* system without assuming a strong crystal field. This
work requires the evaluation of a number of further matrix elements which complete the
set required for any d" system. A compact general expression has been developed to
obtain analytical expressions for all the required matrix elements. Finally, the NMR
shifts in a d° system in a strong crystal field of octahedral symmetry are determined and
the effect of configurational mixing is examined in detail.

INTRODUCTION

In recent years increasing attention has been focused on the theoretical evaluation
of the NMR shifts in paramagnetic systems that arise from the electron-nuclear
interaction represented by the theoretical Hamiltonian

n 3[['Sili'l S,"l 21,]
%zf_OgNIJvB/-"N Z [gs( L 3 L -3 )+ N3 ] (1]
T i=1 INi 'Ni I'N:

In Eq. [1], rn; is the radius vector of the ith electron about a nucleus, say N, with
nuclear spin angular momentum I, Iy; is its orbital angular momentum about this
nucleus, N, g, is the free-electron Landé splitting factor (which for the purposes of
this paper we shall take equal to 2 exactly), and the other terms have their usual
meanings. Buckingham and Stiles (1) used a multipole expansion approach to
evaluate the NMR shifts, which is a significant improvement on the results gained
using the point-dipole approximation (2, 3). The multipole expansion results are
valid for R >0.2 nm, the point-dipole approximation results for R > 0.3 nm. (R is
the vector pointing from the NMR nucleus to the electron-bearing nucleus, as shown
in Fig. 1.) Recently (4, 5) we gave a method of evaluating the contribution from[1]to
the NMR shift which is valid for all distances R, thus overcoming the limitations of
the aforementioned results (1-3). In the first paper (4), we treated a d ! system in a
strong crystal field environment, where the crystal field was of octahedral, tetragonal,
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or trigonal symmetry. In the second (5), ligand field effects were considered for a d'
system in a strong crystal field of octahedral symmetry.

In this paper we present calculations for a d" system in a crystal field of octahedral
symmetry, the condition of strong field coupling having been removed, and for a d*
system in a strong crystal field of octahedral symmetry. The effect of Coulomb
repulsion mixing is incorporated in the latter case. Results for the d' system have
previously been given by Stiles (6), using the multipole expansion approach, and by
Golding et al. (7), who treated the special case with R along the z axis, although they
were able to infer from their results the multiple expansion results valid for
sufficiently large R.

THEORY

In calculating the contribution from [1] to the NMR shift, a crystal field approach
was adopted and the eigenfunctions and eigenvalues of the appropriate theoretical
Hamiltonian were calculated. The principal values o,, 0y,, and o, of the nuclear
shielding tensor & were determined by considering the magnetic field interaction as
parallel to the x, y, and z directions and averaged assuming a Boltzmann distribution.
The contribution from [1] to the NMR shift, AB, is given by

AB = %B(axx +0'yy +0’zz)y

where

()
o€ a.u‘a aBB u=B=0’

where
»=gnunl,

and ¥ is the Hamiltonian given in Eq. [1]. Slater-type 3d orbitals were chosen,
defined by

&)= /3m) *yze™?,
Iny=028"/3m)"*zx e ®,
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0y=(287/3m)! *xy e,
16)=(B"/18%)* 32>~ r") e,
ley=(B"/6m) 2 (x*—y*) e "

This NMR shift AB, is referred to as the pseudocontact shift.
In calculating 4B, molecular hyperfine integrals in addition to those given by us in
Ref. (4) had to be evaluated. In the process of evaluating these integrals using the
method given in Ref. (4), we developed a more streamlined method for evaluating

the integrals of the Hamiltonian
3enc-s)rn I s I}

Mo
%=4_gsgN#BILN{—"“§'_ 3
T n N

[2]

Equation [2] may be expressed in dyadic notation as

H= f—qgsgNuByNs -T-1,
T

where
2 5
Top = (3rnarng — rebap)/ 1N,

which may be expressed as

2
Twg= X , CL3 Yorr(Onpn)/ TR0

M=_
A master formula was developed for the integrals,

(W2 (0)| Yopr (Bn5 DN)/ 7R [ 2m (D)), (3]
where |2, (r)) and |2,.(r)) are 3d Slater-type orbitals defined by

[om(0) = (887/45)%r* ¢ 'Y, (6, §).

A general expression was derived by setting up in quite general terms the
expression for the above integral, [3], and then extracting the coefficients of the
various radial integrals u, (1), v,(¢), wa(t), x.(f), and y, (¢) (Where ¢ = 28R) defined in
Ref. (4). The general expression is

<l/’2m'(l')| You(6n, ¢N)/713~1|l//2m(l')> =C681Y¢,4(0, D)+ CoF () Y4q(@, ®)
+CoT (', A Y24(0, @)+ CoN1Y, (O, P),
where
g=M-m'+m,
Sl = [Suz + 201)3 + 30W4+ 2OX5 + Sy(,],
F(/.L) = [5“2+(20‘A)U1 +AU3+(30—B)W2 +BW4+(20— C)X3
+CXS + 5))4],
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where
A=y, B=(1/7)(10u —45), C=(1/9(5u —30),
T, A)=[S5u;+(20~ A0+ A'v3+(30—-B' —~C'Ywo+B'w>
+C'wa+(20-A)x1+ A'x3+5y,],

where

A'=u',  B'=(10/3)(un'-A"+1), C'=A',
and

=[S5uz+ 1401+ 603+ (5/3)(Two+ 11w,) +20x; + Syol.

The seven unknowns Cg, Cy4, Cz, Co, u, p', and A’ are determined from

coefficient of ux(£) =357 Y 5 (@, D) Yorr (O, @) Yo (O, D):

L g 11 2 11
ﬁi- t f t=l_.6_ ( >{ _1 M+m+#( )
coefficient of v;(¢) 977“22_1 M M-y u =D -m m-p u

X Y2>i:n’ (@, ¢) Yl,mAp.(@7 ¢) Yl,M+y.( @’ ¢) + (-1)M+m,

2 1 1
(2 )Y T (8, B V2(0, @) Y1 re- (6, D)
m —m'-u u

2 0 2 2 2 0
coefficient of wo(?) =—2—-( 2 ) Y3 (O, ¢)+(—1)M“~< )

95)"*\M m 0 95 \M -m' 0

40 /2 ! -,
X Yy (O, <1>)+~<—”) T (—pymeme
3 LB

X( 2 1 1 )( 2 1 1 )
-m M+m+uy ~-M—-—pu/\M u -M-u
2 1 1
X( ¢ l ) 1, MﬂL(@ (p)Yl M+m+y.(@ (D)
m —m'-u u
As an example ($20(r)] Yao(Ox, dn)|ra|iao(r)) is evaluated. The coefficient of u,(f)is

(87/45)Y3, (O, d), which is equal to

4 754\ 2
——(—) Yoo, ®)+ =173 Yaol O, @)+ 5= Yool ®, D)+ =173

8 4

77\13 77(5)" 63(5)"
from which it follows that Cs=4/(77(65)"%), C,=8/(385(5)"/%), C,=2/105, and
Co=4/(315(5)"?). The coefficient of v1(¢) is

16 8 8
105(5)72 Y408 ) +35 ¥20(O, @)+ 7275557 Yool O, P)

5 Yoo(O, D),

22

‘C“[s

] Yao(@, ) + Co[12] ¥50(6, B) + Co[14] Yoo, &),



PSEUDOCONTACT SHIFTS IN OCTAHEDRAL SITES 119

from which it follows that u =38/3 and u’ = 8. Finally, the coefficient of w(t) is

8 4 28 35
35 Yoot e Yoo cz[g 2] voo, ),

whence A’ = 4. This completes the evaluation of the integral.

] Y20(0, @)+ Co[

RESULTS
(a) d" System, Crystal Field of Octahedral Symmetry

For a d' transition metal ion in a crystal field of octahedral symmetry, the
theoretical Hamiltonian representing the various interactions we need consider is
given by

nv? Ze’
3 ——+{1 s+ V() + upl+28) - B+ Hryperfine
me 1

H=—

where V(r)is the crystal field term, the strength of which is defined by the crystal field
parameter A; Fnypersine 1S the Hamiltonian of Eq. [1]; and the other terms have their
usual meanings. Results are given for the contribution to the NMR shift for two
cases, namely, (i) A =0; and (i1) 4 #0.

(i) Zero Crystal Field

When there is zero crystal field present, the ’D ground-state level is split by
spin-orbit coupling into two levels with J values of 3 and 3 and with eigenvalues of ¢
and —3¢, respectively. The contribution to the NMR shift is given by

A_B_ 2 po .U«B [Ko+ Go exp(5¢/2kT) + Mol - eXP(Sf/ZkT)}kT/f]

B 754xm kT 3+2exp(5¢/2kT)
where
t4 3 2
3 1
= +—t—+ +1>
Ko=36p"¢ (108 312!
t4 3 2
=168 ¢ | ——=+—+—+1+ )
G() 16B [4 ( 72731 N t+1
4 5 -t(t4 3 2 >
=— ot —+1+1
Mo=58"e \1gt 5 !

where t = 28R. The condition of zero crystal field is reflected by the absence of any
angular dependence of the final result for AB/B. This must be so since in this case the
system is isotropic.

! This result was previously given by Golding et al. (7), and is given here for completeness. Note that in
their Eq. [6], By is in error and should be

exp(—2a)(32a7 16a® 8a° 8a* 4a3)
= —t—t——+—].

0=
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The NMR shift for R =0 is readily determined from the above. As R - 0,

AB < -3y £ “o p.B [36+ 16 exp(5¢/2kT) + 31— exp(S{/ZkT)}kT/{]
B 47 kT 3+2exp(5¢/2kT)

where (r )= g>/15.

(ii) Nonzero Crystai Field

For the case of nonzero crystal field, the contribution to the NMR shift is given by

AB 2 uo IJ-B Z. 1 (A;+BkT) exp(—e;/kT)

B 3 477 kT Zi=1 p; CXP( €l/kT) ’

where
p1=p2=2 and p3=1,
A
=—24+—+
VRETD
[ 4 X
=~ —
2774710 2
€3={—SA’
and

X =3 +ar+4%

We shall express A; and B; using matrix notation. If we define
=11 ( L+ )
2 2\2

2 1_1(5 é) -1
R IUIAN)

1/2
ab = —6—4X‘1

we may then define matrices g\, and k%, as shown in Tables 1 and 2, respectively. A;
and B; are given by

5
Ai=% Z amgi:t): i= 1’2’
A3=3(Ao+2Bo—2E,),

bnhy, i=1,2,3,

1

1
B; =75

3
Mo
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THE MATRIX ELEMENTS g,

TABLE 1

(i)

m i=1 i=2

1 a* b*

2 6)'%a%p ~(6)"*p’a
3 a*b? b3a*

4 —(6)"%ap> (6)""*ba*
5 b* at

where the coefficients a,, and b,, are given by

‘ , Ay
a; -32 44 -12  -36 4 -132) [
a -2 a4 18 2 _14 C"
as| =1 -8 26 22 36 46 212 D"
as -19 28 4 28 8 -4 E°
as 18  -36 -12 24 36 =72/ \'?°
/ FO
by ~-14 8 1 -12 -32 -4\ (Ao
b, -16 52 94 72 92 8241\ |B,
bs| | B A 8 —46 % 18| Co
bs| | 20 40 -30 0 80 120 |{Do
bs 3 . 0 5 =30/ \E
bs 5 10 5 0 20 —20/ \F,
TABLE 2
THE MATRIX ELEMENTS hﬁ,‘?
i=1 i=2 i=3
at+p* b*+a* 0
€1 €& E2— €&
a2b2 b2a2 0
€1 €2 £2— €
6)2ab®—(6)"2a%p  (6)"/%ab>~(6)"%a’h 0
£1— €2 E2—€
a’ b? a’ b2
+
£1—€3 £y~ E3 E£3— €] E3TER
(6)1/2ab _(6)1/2ab (6)1/2ab _(6)”2ab
£1— €3 £2— €3 E3— &1 £3— €3
b2 a2 b2 . a2
£1—€3 E3—E3 €3 €1 €37 &3

121
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and the six functions Ay, By, Cy, Dy, E,, and F, which are functions of the vector R
are defined in terms of the molecular hyperfine integrals by

AO(R) = <§|Txx|§>+ <T’|T)'Y|n> + <§|Tz24§>’
B()(R) = <§|Txyl7)>+<7)JTyZ|§>+<£|T1xI§>a
Co(R) =3"%(n| T,.|0)+ 3| T,.10) — 23) (¢ | Tey 100+ 3(n| Torle ) = 3(¢| T ),

1/2 1/2

3 3 3 3
Do(R) =Z<8|Tzz|5>_Z<0|Tzz|0>+_2—<0'Txx|8>__—2—<0IT)/YI€>5

Eo(R) = i[{¢ | Inx/ 1| 1) + (€l ny/ 1RO+ lIna/ 1 )],
1/2 1/2

Fom)=i[—2—~<511m/r;io>+%<alm/rms>——3—2—<nuNy/r3N)e>

43 ltsy/rle) ~ Gl ) |

The molecular hyperfine integrals for Ao, Bo, and E,, were given by us in Ref. (4);
those for Cy, Do, and Fy, are listed in Appendix B. In terms of their specific radial and
angular dependences, these six functions are given by

32 /m\'? 16 [\ 2
AR = -==( ) Z(6. 9)5:(R)+ 53 () 240, D)F(R)
1672
- 5’2’5 Z(6, ®INI(R),
32/ m\? 24 [ \'?
BO<R)——@(%) zs<@,¢)sl<R>—2—7-5(—2~I) Z4(6, ®)Fys(R)
4 1/2
+%Zo(@, ®)N1(R),
96 / 7 172 16 / 7 12
ColR) —%(%) Zd0, 9IS (R)~5=(37)  Zu(6, DIEn(R)
1672
+ 1"7’5 Zo(6, &)N,(R),
24 7 7\ 2 48 / 7\ '
DoR)=3-(75)  Zo(0, #)S(R)-2=( ) (6, DIFR)
1672
- 5’2’5 Z4(0, ®)Ny(R),
8 - 1/2 47_‘_1/2
Eo<R)~—E(H) Z4(6, D(R)+~1—Zo(0, H)m(R),
4/ m\Y? 847
F"(R)‘E(H) Z(6. DI(R) +~T—Z(0, H)m(R).
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The three functions Z,, Z,, and Ze have been defined as the appropriate combina-
tions of the spherical harmonics Y, (@, @) that transform as the irreducible
representation Aa; of group O for /=0, 4, and 6:

1/2 1 1/2

7
Zs(0, D)= e Yes(O, @) 307 Yeo(O, @) T Ye-4(0, @)

1/5\'? 1/7\ /2 1/5\'*
Z,0, "’)‘5(8) ) ¢)+5(§) Yol O, ¢>+5(g) Y, 40, D)

Zo(@, 45) = Yoo(@, @).

The functions of radial dependence are given in Appendix A, with F; = F(—24),
F12 = F(38/3), and F23 =F(31)

(b) d° System, Octahedral Symmetry
For a d” system in a strong crystal field of octahedral symmetry the Hamiltonian

2 h2V,2 2 3 2
R e (] N

i=1 2me 143

Il’l‘le

resultsin a > T, ground state (8) whose relative energy for the 3 configuration is given
by

ECT))=-%4+A-5B,

where A and B are the Racah parameters and A is the crystal field parameter.
(Mixing due to the Coulomb repulsion interaction between the > T} state of the t5
configuration and the 3T, state of the et, configuration is considered in Section (c).)
The spin—orbit coupling interaction splits this >T; term into three levels Ey, E,, and
Es.

The pseudocontact contribution to the NMR shift is given by

A_Br_g #o ﬁé Zis=1 (A;+BkT/¢) exp(—Ei/kT)
B 34w kT Zig=1 pi exp(—E;/kT) ’

where
E,=¢
E>=3(,
E;= _%f,

p1=1,p=3, ps=35, and
A =0,
A, =3A¢+Bo+3E,,
As=—3A,-Bo+3E,,
Bi=4A,+8B,+8E,,
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Bz = —6A0— 1230—3E0,
B3 = 2A0+4Bo*‘ 5E0,

where Ay, By, and E; are the functions of R defined above.

(c) d? System, Incorporating Coulomb Repulsion Mixing

The results given in the previous section for a d” system in a strong crystal field of
octahedral symmetry were extended to incorporate mixing due to the Coulomb
repulsion interaction between the *T} state of the 3 configuration and the T state
of the er, configuration. Wavefunctions of the form

) = a|t2 3Tl)“"bk?tz Ty)

NN NN
BVAVAYAY

=70

AB/B (ppm) (b)
20

N /\vf\vf\ B

FIG. 2. The & dependence of AB/B (ppm) for a d' system in a crystal field of octahedral symmetry
where (a) 4=500cm™; and (b) 4 = 5000 cm™". The NMR nucleus is in the xy plane 0.2 nm from the
d-electron-bearing nucleus (T =300 K).

[=]
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TABLE 3

THE VARIATION OF THE NMR SHIFT WITH

RESPECT TO THE CRYSTAL FIELD PARAMETER, A,

FOR A d'! SYSTEM IN A CRYSTAL FIELD OF OCTA-
HEDRAL SYMMETRY

4 AB/B (ppm) AB/B (ppm)
(em™) at@=0° at @ =45°

0 -38.40 -38.40
250 -51.75 -31.40
500 —62.07 -21.63
750 -69.00 —-13.23
1,000 -73.63 -6.97
1,500 -79.19 0.87
2,500 —84.36 8.01
5,000 —88.47 13.46
7,500 —89.86 15.22
10,000 —90.54 16.08
12,500 —90.95 16.56
15,000 -91.22 16.92
25,000 -91.75 17.58
50,000 -92.15 18.06

were used, with the coefficients a and b calculated from the matrix (9)

3T1 t% et2
3 A-5B-%4 6B
et 6B A+4B+1A [4]

The spin—orbit coupling interaction splits the > T; ground-state term into three levels
with relative values for the energy of

"
El_ )

—Llon
E2_2 ’
E — _Llen

3= 2{1

where
{"=(a’—2ab -3¢
The contribution to the shift is given by
AB _2 po pd Y01 {Af(a, b)+Big(a, b)KT/{"} exp(~Ey/kT)

B 347 kT X:-1 pi exp(=E,/kT) ’

where p1 =1, po=3, ps=5, and
fla, b)=a”-3%ab +3b,

g(a, b)=a*+2ab+3b°,
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and
A =0,
A, =%k(a, b,R)+3m(a, b, R),
~4k(a, b, R)+3m(a, b, R),
B, =4k(a, b,R)+8m(a, b, R),
B,=—6k(a, b, R)~3m(a, b, R),
Bs=2k(a, b,R)—5m(a, b, R),
where

k(a, b, R)=a*(Ag+2Bo)+abCo+ b*(—A¢+ Bo—Dy),
m(a, b, R) = a’Eo— abF,—3bE,.

AB/B (ppm)
—10

VRV

AB/B (ppm) b

/\«/\«/\u/\w
7 V; \V/ \Vj AN

-80

FIG. 3. The @ dependence of AB/B (ppm) for a d° system in a strong crystal field of octahedral
symmetry for the case when the NMR nucleus is in the xy plane 0.2 nm from the d-electron-bearing
nucleus for the two cases: (a) t% configuration only; and (b) t% and et, configurations (T =300 K).
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DISCUSSION

To illustrate the results for a d' system, AB/B is plotted in Fig. 2 as a function of
the angle @ for two values of the crystal field parameter 4: 4 =500cm™" and
A =5000 cm ™. The central metal ion is taken to lie in the xy plane 0.2 nm from the
NMR nucleus. The case of a Ti>* ion is considered, for which the value of the
spin-orbit coupling constant, ¢ (calculated from the appropriate spectroscopic data
(10)),is {=154 cm ™, and from Slater’s rules B =4/(3ao). In the xy plane AB/B has
a sinusoidal dependence on @, varying between —62.07 and —21.63 ppm for 4 =
500 cm™ ", and between —88.47 and 13.46 ppm for 4 = 5000 cm™'. Thus, for inter-
mediate strengths of the crystal field, we see that there is a noticeable dependence of
the NMR shift 4B upon the crystal field parameter A. This is further shown in Table
3, where AB/ B is given for a range of values of 4. The central metal ion is once more

. X

1

FIG. 4. The isoshielding diagram for a d” system (r3 and et, configurations considered) for the case
when the NMR nucleus lies in the xy plane. The scale on the axes is in units of 0.1 nm (T = 300 K).
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chosen to lie in the xy plane 0.2 nm from the NMR nucleus. The second column
contains the minimum value of AB/B (at ¢ =(°) and the third column the maximum
(at @ =45°), For values of 4 larger than 10,000 cm ', the change in the NMR shift
with respect to 4 is slight.

To illustrate the results for the d” system, we consider the case of a V'™ ion, in
which £ =210 cm ™’ (10) and B = 1.55/ a,. The quantity AB/B is plotted in Fig. 3 as a
function of the angle @ for the case when the central metal ion is in the xy plane
0.2 nm from the NMR nucleus. Figure 3a gives the results for the case when
Coulomb repulsion mixing is ignored, Fig. 3b for the case when it is incorporated into
the calculations. In the latter case the crystal field parameter 4 is taken to be
20,000cm™" and the value of the Racah parameter B as B =860 cm” H(9).
Diagonalizing the matrix [4] yielded values of a =0.9842 and b = —0.1771 for the
mixing coefficients. Even though the amount of mixing is quite small, a comparison of

y
’
-3
|

-5
L}
-8
-5
=25
1
=50
+
=100
|

=250
1

-500
\

-1000

‘
=1500
- X

F1G. 5. The isoshielding diagram for a dt2 system for the case when the NMR nucleus lies in the xy
plane. The scale on the axes is in units of 0.1 nm (7" =300 K).
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Figs. 3a and b shows that there has been a marked effect on the value of the NMR
shift AB by incorporating the effect of Coulomb repulsion mixing.

Finally, we present in Figs. 4 and 5 isoshielding diagrams for a d” system for the
case when the NMR nucleus lies in the xy plane. The values of {, 8, 4, and the Racah
parameter B were chosen as above. An isoshielding diagram is a contour map in
which the contours are lines of equal chemical shifts (5, 11). Figure 4 gives the results
for the case when Coulomb repulsion mixing is incorporated, Fig. 5 for that when it is
not, the dr3 system. There are regions where 4B becomes slightly positive, of the
order of 0.45 ppm in Fig. 5. A comparison with an isoshielding diagram for a 4’
system in a strong crystal field of octahedral symmetry—see Ref. (5), in which there
are “‘lobes” in the map where 4B reaches 50 ppm—nhighlights the dissimilarities that
may occur in the isoshielding diagrams of three seemingly similar functions, that is,
those of the form

AB/B =aZy(0, D)+ BZi(O, D)+5Z:0O, D).

APPENDIX A: THE RADIAL SERIES
For integrals of In./rk define
fi=v1+3wy+3x3+ya,
ny=v;+3(5wo+4w,)+3x;+ yo,
Hu)=v1+3-A)wo+Awy+(3—B)x;+ Bx3+y,,
where A=y and B = 3(3u —1). The explicit forms of the radial series in terms of

t=2BR are

16,632,0008°[. _, Ut

1=———3—-t—7——£-[1,_e zot /n!J’
16,8008 £ e

F(u)————t——[(u 9)-¢ {sriu 9)3;0:/,1!}},

t

T(,u’,)«’)*6053[ TA =3u’ +3)
B

¢’ (.U« 9)6 (A" =24’ 6)5 n }]
- + 1
e\t 14 T g +A =30 3)2””
t2
N1= [ {—1—8—+3‘+— t+1”,
8
flz____w,ogw R
n=0

6

3 1-3
() =2 [@-3u-e{ - 22 W54 2-3u) z r/n'}]

3% 2 7
n1=———[e {§E+—2‘i+t+1}}.
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The appearance of the incomplete factorial function,
N
in(?) :N![l—e" Y t"/n !J,
n=0

ties in with results of Gottlieb er al. (12).

APPENDIX B: SOME MOLECULAR HYPERFINE INTEGRALS INVOLVING
THE ¢ ORBITALS

Employing the notation of Griffith (8) define
Z10(0, D)=Y,(0, D),

) 1
Z54(8, ®) = 517{ Y1 (0, @)+ Y (6, D)),
Z$4(6, ®) =5{ﬁ{YL_M<@, ®)— Y (O, D)),

We also require one additional radial series defined by
Th=v1-03+(1/21)(49wo— 40wy~ Ywy) + x1 — x5.

The additional molecular hyperfine integrals involving the e orbitals are
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