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A principal component analysis has been applied on equilibrium simu-
lations of a p-heptapeptide that shows reversibIe folding in a methanol
solution. The analysis shows that the configurational space contains only
three dense sub-states. These states of relatively low tree energy corre-
spond to the "native" left-handed helix, a partly helical intermediate, and
a hairpin-like structure. The collection of unfolded conformations form a
relatively diffuse cloud with little substructure. Intemal hydrogen-bond-
ing energies were found to correlate well with the degree of folding. The
native helical structure folds from the N terminus; the transition Erom the
major folding intermediate to the native helical structure involves the for-
mation of the two most C-terminal backbone hydrogen bonds. A four-
state Markov model was found to describe transition frequencies between
the conformational states within error limits, indicating that memory-
effects are negligible beyond the nanosecond time-scale. The dominant
native state fluctuations were found to be very similar to unfolding
motions, suggesting that unfolding pathways can be inferred from fluctu-
ations in the native state. The low-dimensional essential subspace,
describing 69 % of the collective atomic fluctuations, was found to con-
verge at time-scales of the order of one nanosecond at all temperatures
investigated, whereas folding/unfolding takes place at significantly
longer time-scales, even above the melting temperature.
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thermodynarnic equilibrium between the folded
and unfolded states to be established. One of the
most extensively studied cases so lar has been the
reversible folding of a non-natural seven residue
I3-peptide (composed of J3-amino acid residues)
which folds into a left-handed 31 helix in methanol
(Daura et al., 1998). MD simulations have been per-
formed at four different temperatures ranging from
298-360 K, and the resulting trajectories, spanning
up to 200 ns, correspond weIl with the available
experimental NMR and circular dichroism data
(Daura et al., 1997, 1999a,b; Seebach et al., 2000).

These simulations thus provide a unique oppor-
tunity to study peptide folding at the atomic level,
and can be considered a model system lor the
study of the folding of larger polypeptides. The
folding/unfolding simulations have been charac-
terized in detail from a structural perspective. In
particular, the folding pathways of this jJ-peptide

Introduction

Recent computational studies have shown tOOt
the problem of peptide (and protein) folding is
slowly becoming tractable by atomic-Ievel molecu-
lar dynamics (MD) simulations using physically
realistic models of these (bio)molecules in explicit
solvent (Daggett, 2000; Nardiu el al., 2000; Bonvin
& van Gunsteren, 2000; Chipot el al., 1999; Pande
& Rokhsar, 1999; Daura et al., 1998; Duan &
Kollman, 1998). In the case of some small oligopep-
tides the simulation times are long enough for
reversibie folding to be observed and, thus, for a

Abbreviations used: MD, molecular dynamics; PCA,
principal component analysis; HBN, hydrogen bond
network; MSF, mean-square fluctuation.
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structures (de Groot et al., 1998; van Aalten tt al.;
1997; Abseher et al., 1998). A PCA of simulations of
the \mfolding of a fJ-hairpin has provided an initia1
inditation that dimension-reduced models are aIso
useful in the description of the (un)folding
dynamics of peptides (Roccatano el al., 1999). If the
fu1l dynamics of a system can be approximated
successfu1ly by relatively few global degrees of
freedom, this can be exploited in techniques that
stimulate enhanced s.ampling of these coordinates
(Amadei et al., 1996; de Groot et al., 1996a;
Grubmüller, 1995; Abseher & Nilges, 2<XX». The
long simulations available for this peptide provide
a good opportunity to study the convergence and
stability of this subspace, and its dependence on
the starting conformation in short pieces of trajec-
tory that suffer Erom incomplete sampling.

have been analyzed, the relative free energies of
different conforrnational sub-states have been esti-
mated, and the correlation of several geometrical
propertjes to the degree of folding of the peptide
has been investigated. One of the surprising results
was that the unfolded state as weU as the folding
process involve a relatively smaU number of con-
forrnational states (Daura et al., 1998, 1999b).

Extending this analysis, we have investigated in
detail the structural and the dynamic properties of
the transitions between the different folding (sub)-
states. For this purpose, a principal component
analysis (PCA) was performed, which yields the
main coUective fluctuations observed in a cluster of
structures. Applied to the peptide folding simu-
lations, it shows how many collective degrees of
freedom are necessary to adequately approximate
the folding dynamics, depending on the complex-
ity and diversity of d1e folding transitions.

For a coarse-grained description of the peptide
dynamics to be successful, a sma1l subset of rel-
evant collective degrees of freedom must exist that
aUow a sufficiently accurate description of the fold-
ing motions. In addition, the remaining (and neg-
lected) degrees of freedom must be negligible in
terms of both structure and dynamics. In particu-
Iar, their inf1uence on the essential degrees of free-
dom, possibly showing up as memory effects,
should be smalI. With the relatively long simu-
lations available, these two main prerequisites lor
the application of such dimension-reduced models
for the description of long-time dynamics of
macromolecules can ncw be tested.

Memory effects must be small on the time-
scale of the dynamlcal process of Interest

Jf long-time memory effects play a major role in
large-scale conformational transitions, then short-
time simulations will not provide insight into long-
time behavior of the same system. If, however,
such memory effects are smalI, then coarse-grained
descriptions of the folding dynamics derived Erom
short simulations may be valid. To decide if this is
the case tor the peptide at hand, two independent
tests tor memory effects in confonnational tran-
sitions are presented. The fust involves a compari-
son with a model that assumes a Markov process
tor transitions between stabie structures based on a
clustering in the configurational space, the second
is more genera 1, in that it is independent of any
particular choice of clustering.

If the above two conditions are fuJfilled tor the
simulations of the J3-peptide, then the distribution
of conformations in the essential subspace should
structurally and dynamically reflect and character-
ise concepts like folding intermediates and folding
pathways. Moreover, given an acceptable level of
convergence, the free-energy landscape can be
mapped directly onto the principal coordinates, as
the relative configurational free energies are related
directly to the density of states in this subspace.
Such an analysis would then indicate confor-
mational sub-states along the "natural" folding
coordinates, with barriers of vatying height in
between. Furthermore, the entropic contribution
could be estimated Erom the difference in behavior
of the simulated system at different temperatures.

Sampling must be dominated by a smal!
number of collective modes

Jf indeed the majority of the coUective fluctu-
ations is found to take place along a smaU number
of collective degrees of freedom. the simulations of
the folding/unfolding equilibrium of this peptide
with a lengili .of 200 ns aUow an investigation of
the speed of éonvergence of these coordinates. The
question of whether a principal component anaI-
ysis is suitable to investigate protein dynamics
Erom simulations in the time-scale of hundreds of
picoseconds to nanoseconds has been under debate
for some time. Some authors have argued that the
low-dimensional "essential" subspace in which the
majority of the coUective fluctuations are often
found to take place would not be converged at
such short time-scales (Balsera el al., 1996; Clarage
el al., 1995), whereas others found that a useful
approximation of the essential subspace can
usually be obtained aftel relatively short simu-
lation times (De Groot et al., 1996b; Amadei et al.,
1999a). Moreover, applications to nativ~tate
dynamics of proteins have shown that dimension-
reduced models derived Erom PCA can be useful
in the interpretation of simulated protein dynamics
(Garda, 1992; Amadei et al., 1993; van Aalten et al"
1995a,b; Hayward et al., 1995) and of dynamica!
propertjes derived Erom clusters of experimental

Geometrical propertjes that correlate wlth the
degree of foldlng

An interesting aspect of folding in genera I, and
for native structure prediction in particular, is the
search for geometrical properties that correlate
with the degree of folding. Daura. el al. (1998) have
shown that all of the geometric or energetic
properties investigated correlate poorly with the
root-mean-square deviation (RMSD) trom the
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one such hydrogen bOnd that structurally resembie
the nat\ve confonnation. Therefore, the number of
native backbOne hydrogen bands alone was not
dii'gnostic of the folded state. Here, we investigate
if a knowledge-based hydrogen bond network
potential improves the accuracy of identifying the

'èxJX'rimental structure of the r~-peptilie. Among
the properties investigatt.-d, the numbtc-r of 3. back-
b<)ne hydrogen bonds was found to be most infor-
mative, in the sense that structures with five such
hYlirogen bonds alt had a native conformation.
However, structures were found with zero or only

Figure 1. Projections of the 340 K
simulation onto two planes
spanned by a linear combination of
the three eigenvectors with largest
eigenvalues of an all-atom PCA,
coloured according to the radius of
gyration of the peptide (blue for
small gyration radius, red tor
large). Despite the cIear correlation
between the projection onto these
coordinates and the .radius of gyra-
tion, there are many, structurally
diverse, conformations with rela-
tively small gyration radü.
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eigenvectors of the covariance matrix constructed
from the central backbone coordinates. Here, the
projéctions are coloured according to the config-
urational density, calculated Erom nearest-neighbor
distances as described in Materials and Methods.
The largest, most densely populated sub-cluster (I)
corresponds to the native left-handed helix
(Figure 3,1), with all helical backbone hydrogen
bonds intact between residues i and i + 2. The clo-
sely connected, but distinct dense sub-cluster (D)
corresponds to a conformation similar to the native
structure, but lacking the two C-terminal backbone
hydrogen ronds (Figure 3,11). The third-most dense
sub-cluster (III) con-esponds to a hairpin-like struc-
ture (Figure 3,III) in which the C terminus folds
back onto itself, forming hydrogen bands between
the backbone of residues 2 and 6 as weil as
between 3 and 6. The N terminus in this structure
is folded back onto the turn, and the terminal
amino group forms hydrogen bands with residues
2, 4 and 5. The rernaining, relatively diffuse, cloud
of structures consists of unfolded and partially
folded confonnations. The three dense clusters are
also identified by k-medoid clustering applied to
the 60 coordinates of the central backbone (blue,
cyan, yellow, respectively, in Figure 4(a); the
rernaining conformations are depicted in red). An
almost identical definition of the clusters is
obtained when the clustering is limited to the
three-dimensional subspace spanned by the three

native conformation among a cluster of folded,
partially folded and unfolded conformations.

Results

Structures

Figure 1 shows two different projections of the
simulation at 340 K onto two suitably chosen
planes defined by linear combinations of the three
eigenvectors with largest eigenvalues from an all-
atom PCA. Thus, each "bali" in the picture rep-
resents one snapshot Erom the simulation. The col-
our denotes the radius of gyration of each
snapshot. The extreme values of the gyration
radius are found near the borders of the spare
spanned by these degrees of Ereedom. On one side
are the completely stretched conformations (in
red), sampling a relatively small fraction of con-
figuration space, whereas on the other si de there
are many structurally diverse conformations with
similar, low gyration radii (in blue). Overall, the
sampled subspace in these degrees of freedom
resembles a half-sphere, with the top correspond-
ing to the most stretched conformations, and the
flat bottom corresponding to all compact confor-
mations, of which the native left-handed helix
farms a smalI, dense fraction.

Figure 2 shows the projection of the 3-W K simu-
lation onto the plane defined by the two principal

Figure 2. Projection of the 340 K
simulation onto the plane spanned
by the two prindpai eigenvectors
of a KA perfom1ed over the cen-
tral backbone coordinates, coloured
to configurational density. Indi-
cated are the three regions of high-
est density. The central stroctures
of each of these three densest clus-
ters (indicated by fellow drcles)
are depided in Figure 3. Apart
trom these three dense sub-dusters,
the cloud of (unfolded) confor-
mations is relatively unstructured.
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and a corresponding transition hequency matrix
was co\1Structed. From the transition frequencies,
the optimal Markov rates were calculated as
described in Materials and Methods. The Markov
model obtained is depicted in Figure 5. The ratios
between the transition probabilities correlate weIl
with the corresponding occupancies of the
involved states. Only for the I ~ m transition the
transition probability might be underestimated,
since no transition of that kind has been observed,
although a value of 0.1 would be expected Erom
the UI ~ I transition frequency and the occupancy
difference of bath states. Several "simulations" of
the true Markov process based on these parameters
were compared to the MD simulation. In order to
validate whether the folding/ unfolding transitions
in the MD trajctories can be described by the
(memory-free) Markov model, conditional tran-
sition probabilities were monitored as a function of
time bOth for the MD simulation and for the simu-
lated Markov trajectories. Except for the m ~ m
transition probability (the probability to be in state
UI at time t and at time t + 6t), all the 16 first-
order conditional transition probabilities are,
within statistica I error, identical for the MD simu-
lation and the simulated Markov processes
(Figure 6). This implies that, overall, the folding
transitions between the major folding states can be
described successfully by a Markov process. Mem-
ory effects appear to play only a minor fale during
the folding of this peptide.

An analysis of the transition frequencies between
the clusters shows that 95 % of the transitions
towards cluster I, the native left-handed helix, orig-
inate Erom cluster ll. Together with the structural
similarity of the two states, this suggests that clus-
ter II can be described as a folding intermediate.
Just over 3.5 % of the transitions towards cluster I
originate Erom cluster IV, the collection of unfolded
conformations and approximately 1.5 % from the
hairpin-like structure of cluster ill.

As described in Materials and Methods, memory
effects were also investigated independently of any
particular clustering. Figure 7 shows the distri-
bution of times for transitions that return to a state
that had been sampled immediately before (21,722
transitions), compared to the distribution of all
conformational transitions (without the require-
ment of returning to a previously sampled con-
figuration, 1,169,873 transitions). For comparison,
bath distributions were norrnalised to 1. The lar-
gest difference is observed for transitions taking
place at time-scales of less than 1 ns, indicating a
memory effect that causes the peptide to return to
conforrnations that have been sampled shortly
before. The apparent differences observed at time-
scales from 4-8 ns are believed to be caused by the
dominance of the short-time memory effect in the
norrnalization procedure.

Figure 3. Structures of central cluster members of the
three densest clusters (see Figure 2). The structures are
coloured blue to red Erom the N to the C terminus. Indi-
cated by broken bars are intemal hydrogen bonds. This
Figure was made with Bobscript (Esnouf, 1997; Kraulis,
1991) and Raster3D (Merritt & Bacon, 1997).

eigenvectors of the covariance matrix with the
largest eigenvalues, which account for 69 % of
the total fluctuation in the simulation (Figure 4(b».

Dynamics

Transitions between the tour clusters as
observed in the 340 K simulation were monitored
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figure 4. Results of a k-medoid
clustering (a) in the tuIl 6O-dimen-
sional coordinate space spanned by
the the central backbone residues
and (b) in the subspace spanned by
the three principal eigenvectors
calculated for these residues.
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Figure 5. The four-state Markov model that best
describes the transitions between the core parts of the
four clusters derived trom the 340 K simulation. The
numbers along the arrows denote transition probabilities
(xlQ4) between the clusters in time-steps of 0.5 ps, the
numbers inside the circles denote the occupancy of each
cluster.

central part of the backbone residues (see aiSO
Materials and Methods). Figure 8 shows the distri-
bution,'of the calculated tree energies from the
340 K simulation along the collective backbone
fluctuation with the largest amplitude (eigenvector
of the covariance matrix with the largest eigen-
value). Therefore, ~e three high-density clusters
that had been identified by the clustering pro-
cedure are recognizable as the lowest free-energy
conformations. Clusters 1 (the native left-handed
helix conformation) and U (the main folding inter-
mediate) are related structurally and have similar
free energies, with only a relatively small barrier
between the two states. There are no low free-
energy pathways connecting cluster In to clusters I
and U, as deduced from the transition rates
between these clusters. For successful folding to
take place from cluster m, the structure will first
have to undergo a conformational change towards
a less structured state of higher tree energy I before
it Can re-fold towards the native structure.

Figure 9 shows a comparison of the relative
sampled configurational tree energies lor the simu-
lations at 298 and 340 K. The simulation at 298 K
samples clusters 1 and U more frequently than the
simulation at 340 K, leaving the unfolded state
poorly sampled; cluster m is not visited at allo In
the simulation at 298 K, the difference between
clusters 1 and U is more pronounced than at 340 K,
with the barrier between the two clusters being
clearly visible. This suggests an entropic contri-
bution to the free-energy difference between the
two most densely sampled clusters.

Free energies

Relative configurational tree energies were calcu-
lated as the logarithm of the configurational den-
sity in the 6O-dimensional space spanned by the

Figure 6. Conditional transition
probabilities between clusters in
the 340 K MD simulation (continu-
ous, bold line) and in simulated
Markov processes (broken lines) as
a function of time. The simulated
Markov processes were based on
the transition matrix depicted in
Figure 5 and differ trom each other
in the applied random-number
seed. From the scatter of the three
Markov probabilities, the statistica!
error can be estimated.
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energy higher than 3.0 are native (or positive pre-
dictive value) and the probability that confor-
matmns with an HBN energy smaller than 3.0 are
non-native (negative predictive value) are bath
approximately 86 %. For higher values of the HBN
energy threshold, the probability of correctly iden-
tifying the native state is even higher, but now
only for conformations with an HBN energy larger
than the threshold.

0.4

0.3

0.2

0.1

0
0 I 10 15

time (ns)

Figure 7. The distribution of transition times for con-
formational transitions in which the system returns to a
state that had been sampled immediately before (filled
bars), compared to the distribution of transition times of
similar conformational changes, but now without the
condition to a previously visited state (open bars). The
error bars correspond to dte statistical standard devi-
ation estimated trom the observed transition frequen-
cies.

Foldlng determinants

The observation thai the major conformations
involved in the folding of this peptide have mark-
edly different hydrogen-bonding patterns led us to
investigate the intemal hydrogen bond network
(HBN) energies in detail. Figure 10 shows plots of
the HBN energies of conformations extracted trom
the simulation at 340 K against the RMSD trom the
experimental structure and against the relative con-
figurational tree energies. In line with the results
trom a previous analysis, which compared the
number of native backbone hYdrogen bonds to the
RMSD trom Jhe "native" structure (Daura el al.,
1998} rather' than energies, both graphs show a
clear correlation between the HBN energies and
the distance trom the native structure (with corre-
lation coefficients of 0.72 and 0.76, respectively).

For any geometrical or energetical property to be
useful as a predictive measure tor the degree of
folding of any peptide or protein, the correlation
between the calculated property and the degree of
folding should be high, and the number of outliers
(false positives and false negatives) should be
small. To investigate how reliably the HBN ener-
gies can identify the native conformation in the
ensemble of structures simulated at 340 K, the
number of native and non-native conformations
with HBN energies above and below a certain
energy threshold were counted tor different
threshold values. As can be seen in Figure 11, for
values of the HBN energy of around 3.0, the prob-
ability of correctly identifying the native state
based on HBN energies is about SS %, since the
probability that conformations with an HBN

Convergence of essential subspaces

Figure 12(a) shows that for the 340 K simulation,
the three-dimensional essential subspace has
reached an almost complete convergence after 200
ns. The overlap between the essential subspaces
extracted Erom the first and last 90 ns with the full
200 ns trajectory is 98.6 % and 98.3 %, respectively.
The overlap between the first and last <X) ns is
94.3 %. Moreover, the subspace converges rela-
tively last already within 100 ps, an overlap with
the converged set of eigenvectors of 58 % is
reached on average, and within 10 ns an overlap of
80 % is accomplished. In terrns of atomic displace-
ments, the three-dimensional essential subspace
extracted Erom the centra! backbone configurations
of the 340 K trajectory accounts for 69 % of
the total (internal) mean-square fluctuation.
Figure 12(b) shows that essential subspaces
extracted Erom 100 ps trajectories, on average,
account lor 63 % of these collective fluctuations,
making up 43 % of the total mean-square fluctu-
ation. For trajectory pieces of 10 ns, these numbers
are 88% and 61 %, respectively.

To investigate how similar the unfolding
motions are to the native state fluctuations, a PCA
was performed over all structures of cluster 1 (see
Figure 4) and subspace overlap values were caIcu-
lated with respect to the converged set of eigenvec-
tors extracted Erom the 200 ns simulation. The
essentiaI subspaces show an overlap of 52 %
(Figure 13) and the subspace spanned by the first
six eigenvectors of the native state cluster repro-
duce the essentiaI subspace of the complete trajec-
tory for 82 %. From the sixth eigenvector on, the
convergence to 1 occurs at a similar rare as is
observed for l-ns fragments of the full trajectory.
This indicates that unfolding directions are highiy
similar to native state fluctuations. The iargest con-
tribution to the three main unfolding directions
comes Erom the native state essentiaI subspace. The
next three degrees of freedom in terrns of the
amount of fluctuations in the native state form the
second largest contribution to the overlap with the
principal unfolding directions. This indicates that
unfolding takes place mainly aIong degrees of tree-
dom that already exhibit an appteciable amount of
fluCtuation within the native state cluster, and
hardly involves directions that are not accessibie in
the native state.
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Figure 8. Relative configurational
tree energy distribution of confor-
mations extracted Erom the 340 K
simulation along the principal coor-
dinate derived Erom the central
backbone atoms. Relative tree ener-
gies were calculated Erom the
phase-space densities, derived Erom
averaged nearest-neighbor dis-
tances (RMSDs calculated over the
central backbone atoms). The verti-
cal coordinate as weIl as the colour
indicate the free-energy value (with
the lowest free-energy values blue).
The three dense sub-dusters are
indicated in yellow. The x-axis is a
linear combination of the two prin-
cipal eigenvectors that span the
plane shown in Figure 2, and was
chosen to optimally show the
difference between the clusters.

Discussion

The PCA results of the equilibrium folding
dynamics of a p-peptide presented here provides a
perspective of the conformational dynamics that
highlights different aspects trom thai of the RMSD-
based analysis (Daura el al., 1998, 1999b). The bor-
ders of the essential subspace correlate weIl with
extrema in the gyration radius of the peptide (cf.
Figure 1), indicating thai global boundaries as
defined by the MD force-field correlate with the
degree of compactness of the peptide. On one side,
the most stretched conformations are found, indi-
cating that a physical border of the force-field con-
nected to the stretching of covalent bond lengths
and angles is approached. On the other, flat side of
the half-sphere, the most compact structures are
sampled, of which a1so the native state cluster is
part. The relatively sharp border of the essential
subspace on this side corresponds to sharp repul-
sive Lennard-Jones energy terms that prevent sub-

stantial non-bonded atomic overlap beyond the
van der Waals radü.

Apart Erom the three dense sub-clusters
(Figures 2 and 4), and in contrast to the larger
number of clusters obtained by Daura et al.
(l999b), the essential subspace appears to be
sampled relatively homogeneously, which raises
the question of whether a further subdivision in
new clusters is meaningfulo Moreover, the compari-
son of the clustering carried out in the space
spanned by the three principal eigenvectors and in
the full configurational space shows that virtually
all features are captured already in this low-dimen-
sional essential subspace. Therefore, structural
differences in the orthogonal subspace play only a
minor mIe and, fot most purposes, a projection
onto only the first principal modes yields a satis-
factory approxirnation of the dyna~cs in the fu1l

configurational space.
One feature of the ensemble revealed in the PCA

results is an intermedia te state (state II in Figures 2
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Figure 9. Relative configurational
tree energies (vertical axis) at differ-
ent temperatures along d\e princi-
pal coordinate of the 340 K
simulation (horizontal axis). The
simulation at 298 K is depicted in
blue, the 340 K simulation is
depicted in red. The 298 K simu-
lation clearly shows the free.energy
harrier between clusters I and U,
whereas the 340 K simulation
shows that there is no low tree-
energy pathway connecting cluster
m to the native state (see also
Figure 8).

ing algorithms like fuzzy clustering may overcome
this problem partially, but we fee! that an optimal
clustering lor datasets of adynamical origin should
take into account the static distribution of data
points, and at the same time optimize residence
times and transition frequencies between clusters.

The only significant deviation in the simulation
of 340 K hom a Markov process shows up in the
conditional probability to find the system in state
m (Figure 6). For the fust 2 ns, the probability to
remain in (or return to) cluster m is higher than
expected hom the corresponding Markov process.
A possible explanation for this effect is that clusters
mand IV are relatively close to each other, and the
barrier between them is smalI. Therefore, the sys-
tem can easily cross the border hom m to IV and
return without having been unfolded completely,
and thus without actually having reached cluster
IV. In the simulated Markov processes, all tran-
sitions are sharp and complete. Hence, with the
same transition probabilities, the chance to return

and 4) close to the native state. Because of the
remarkab!y ;mall RMSD between states I and 11 of
only 0.8 A this intermediate was not seen in the
1 Á RMSD clustering described before (Daura et al.,
1999b). Nevertheless, the barrier between the two
states is clearly visible in Figure 9 and indicates
that indeed there are two structurally related but
distinct conformational states.

Both the k-medoid clustering presented here as
weil as the RMSD clustering suffer trom a general
problem of clustering algorithms: eventually all
data points will be clustered, even if the inherent
structure of the distribution may not justify it. In
some cases, this can cause an overestimation of the
amount of substructure in a dataset that is hard to
recognise. The k-medoid clustering as presented
here also suffers trom this drawback, and the sig-
nificance of the clusters can be estimated only trom
the dependence of the cluster definition on the
chosen parameters, most notably the number of
clusters to be defined. More sophisticated cluster-
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Figure 10. HBN energies calcu1ated Erom snapshots trom the simulation at 340 K compared to !he backbone RMSD
trom !he experimental structure (upper panel) and to the configurational tree energy (lower panel). Indicated are !he
correlation coefficients between !he two datasets.

to cluster m is smaller in the simulated Markov
processes than in the MD simulation.
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The PCA results have provided an intuitive
basis for the presentation of calculated confor-
mational {ree energies (Figures 2 and 9), clearly
showing the relative weights of each cluster and
the barrier heights between the clusters. The kin-
etics, deduced Erom the Markov process based on
the transition rates between the clusters, agree per-
fectly with the picture obtained Erom the PCA.

Although same outliers are found when the
HBN energies are plotted against the confor-
mational {ree energies or against the RMSD Erom
the experimental structure (Figure 10), the HBN
energies are a more sensitive and unbiased
measure of the folding state of this peptide than
the number of native backbone hydrogen bonds.
Moreover, the obvious correlation between the
HBN energy and the configurationaI {ree energy
suggests that internal hydrogen bonding plays an
important, and ~ibly dominant, role in stabiliz-
ing specific conformations and guiding the folding
of this peptide.

We have found the essentiaI subspace to con-
verge fast, as can be seen Erom the average sub-
spare overlap of 0.58 Erom fragments of only
100 ps with the fuII 200 ns trajectory at 340 K. Of
the mean square fluctuation that takes place in the
essential subspace extracted Erom the 200 ns simu-
lation, 63 % can be described by essential subspaces
Erom trajectory fragments of 100 ps, on average.
Such tast convergence maf not be transferable
directly to the dynamics of more complex proteins,

Figure 11. Positive and negative predictive values
(probabilities of correctly identifying native and non-
native structures, respectively) based on HBN energies
at different energy threshold values. The curve with the
filled squares depicts the native-state fraction of aU con-
fonnations with a HBN energy above the threshold. The
curve with the open triangles depicts the non-native
fraction of all conformations with a HBN energy below
the threshold. For HBN energies of around 3.0, the
probability of successfully identifying the native as weil
as the non-native state is about 85 %.



310 Essential Dynamics of RevelSib/e Peptide Folding

.. 1

..I"'Z'"Z-~

.T0.9 ..,

10,8

0.7
-100ps~

1 na fragments
- - - - 20 lIS fragments
- -.cluster1

(J
0.6

-.-J180.5
. . . .
8 9 12 15

"ï~ ~
3

Figure 13. Comparison of native state fluctuations to
unfolding motions. The bold, continuous line depicts the
subspace overlap between eigenvectors extracted Erom
the native state cluster to the overall 200 ns simulation
at 340 K. For comparison, the same type of- graph is
shown tor fragments of varying length Erom the full tra-
jectory .

nature (Amadei et al., 1999b). Central in both
models is the similarity between principal direc-
tions within one minimum to confom\ational tran-
sitions between minima. The tact that the essential
subspace derived trom the native sub-state shows
a significant overlap (82 %) with the overall fold-
ingfunfolding essential subspace suggests that the
concepts used in both models apply a1so to folding
transitions between conformational states that are
themselves collections of local minima.

Figure 12. Convergence of the essential subspace of
the 340 K simulation. (a) Essential subspace overlap
values (see Materials and Methods tor a definition)
between fragments of varying length with the con-
verged set extracted trom the 200 ns simulation (con-
tinuous, bold line) and between paiIS of fragments
mutually (braken line). (b) Fraction of the mean-square
fluctuation (MSF) of the 200 ns trajectory at 340 K that
can be described by a three-dimensional essential sub-
space extracted trom trajectory fragrnents of different
lengt1\. Bath the overall fraction is shown (right-hand
side) and the &action of the fluctuation described by the
three-dirnensio~l essential subspace extracted trom the
200 ns trajectdfy (which describes 69 % of the total
MSF);

Concluslons

The results presented heTe show that dimension-
reduced models can be used to describe many
aspects of conformational transitions involved in
peptide rolding. It has been demonstrated that the
two main prerequisites for such an approximation,
a last convergence of the essential subspace and
negligible memory effects at large time-scales, are
fulfilled. For the J3-peptide investigated, the set of
unfolded confonnations comprises a relatively dif-
fuse cluster of structures in configurational space
flanked by three more dense clusters identified
as the native fold, the main on-pathway folding
intermedia te and a non-productive off-pathway
conformation. Therefore, the nwnber of sampled
conformations during rolding is much smaller than
could be expected (Daura el al./ 1998)/ and native-
state dynamics as weIl as folding dynamics
involves primarily only a few of the many appar-
ently available collective degree5 of freedom. This
should simplify the search for the lowest tree
energy state considerably. In addition, the finding
that internal HBN energies correlate significantly

either in their native state or during folding. How-
ever, the facts that the essential subspace converges
significantly faster than the typical folding time,
and that the essential subspace of one sub-state
yields a reasonable approximation of the overall
subspace, indicate that dimension-reduced models
will prove valuable in the study of (folding)
dynamics of macromolecules.

Two similar models have been proposed to
describe conformational transitions in proteins at
different time-scales. In bath, the short-time beha-
vior is described by motion within a harmonic
weil. In the fust, the long-time behavior is
described by a hopping among the harmonic mini-
ma (Kitao et al., 1998), whereas in the second the
transitions between the minima are of a diffusive
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with the degree of folding opens new possibilities
fot the design of simp1ified interaction potentials
targeted towards peptide or protein folding.

(1)

and, therefore, can be computed through iteration. Here
N represents the tota! number of states. InitiaUy, the rij
values were estimated Erom the distibution of transition
frequencies n"" and subsequently, equation (1) was iter-
ated. The values tor r P'f were found to converge within a
few steps.

Transition frequencies at different time-scales were
calculated Erom the MD trajectory at 340 K and com-
pared to those obtained Erom a number of simulated true
Markov processes constructed Erom the calculated tran-
sition rates.

Memory effects were investigated by monitoring con-
formational transitions without prior classification of all
conformations to clusters. This method has the advan-
tage that it is model-tree, in the sense that it is indepen-
dent of the applied clustering algorithm. The idea is to
investigate the path-dependency of conformational tran-
sitions. For this purpose, the MD trajectories were
scanned for conformational transitions in which the sys-
tem returns to a conformational state that had been vis-
ited immediately before. Those history-biased transition
times were compared to unbiased average transition
times of the same conforrnational change, i.e. to those
detennined without the condition of the system return-
ing to the same state. In accordance to previous studies
of the same system (Daura el al., 1999b), a conformation-
al state was defined as aU conformations within 1 A
RMSD calculated over the central part of the backbone
of the peptide. Conformational transitions were counted
if the backbone RMSD between two structures exceeded
2A.

Approximate relative configurational Gibbs free ener-
gies Gj of phase spare regions in the direct vicinity of
conformation j were calculated Erom local phase spare
densities pj. These densities were estimated Erom
averaged nearest-neighbor phase spare distances (dj):

Gi = -kTInPi; with Pi CX-<i>F

with the exponent m being the effective dimensionality
of the (sub )space in which the densities were deter-
mined : .

Nearest-neighbor phase spare distances were deter-
mined lor aD sampled configurations i ror each simu-
lation Erom the average of the distances djJ to the 100
nearest neighbors j (calculated as RMSD values for the
20 backbone atoms in residues 2 to 6 aker a least-squares
fit). A weighting scheme was applied using a Gaussian
function with width diSIJ chosen as the distance to the
SOth nearest neighbor:

Materlals and Methods
Molecular dynamics simulations of a ~heptapeptide

in solution at different temperatures were anaIrzed.
Details of the simulations have been described (Daura
el al., 1998). In total, four simulations were analyzed: at
298 and 340 K of 200 ns each, and at 3SO and 360 K, of
SOnseach.

PrincipaI component analysis was carried out by diag-
onalizing the positional covariance matrices constructed
Erom the trajectories after a least-squares fit to a reference
structure. A PCA was performed on a\l atoms of the
peptide and on the central backbone (residues 2-6) using
the WHAT IF (Vriend, 1990) and Gromacst software
packages.

A k-medoid clustering (Kaufman &: Rousseeuw, 1990)
was performed over a\l strnctures in the 340 K trajectory
projected on the three-dimensional spare spaMed by the
three eigenvectors of the covariance matrix with the lar-
gest eigenvalues. For comparison, the same procedure
was repeated in the full &-dirnensional space spanned
by the 20 backbone atoms in residues 2 to 6. In a
k-medoid or k-means clustering, an iterative search is
performed for the cluster centers that have a minimal
sum of distances to their cluster members. The distri-
bution of transition times between the obtained clusters
was compared to a Markov process, which, by defi-
nition, is memory-free. Accordingly, deviations between
the simulations and the Markov process wi11 point to
memory effects. To avoid bias introduced by the unphy-
sically sharp cluster boundaries, the boundary regions
were excluded Erom the analysis and only the "core"
parts of each cluster were considered to calculate tran-
sition rates. The care of a cluster was defined as that part
of each cluster that had a Euclidian distance to the clus-
ter center smaller than the average distance tor all cluster
members to the cluster center. In addition, to remove
short-time oscillations, transitions were taken into
account only if the new state was populated tor at least
2.5 ps.

To compute ~ Markov transition rates that best
matdt the transition time distribution obtained Erom
the simUlation, a maximum-likelihood approach was
employed. Accordingly, the (conditional) probability that
the observed frequencies nPII tor transitions of state P to q
(or that the system remains in or returns to state P if P
equals q) are the result of a Markov process with tran-
sition rates r PIl were estimated from the (conditional)
probability to ootain the observed frequencies. n" given
the Markov rates r"", and subsequently maximised. Here
we have neglected the influence of the (unknown) a
priori distribution of Markov processes.

The maximum likelihood is obtained tor Markov rates
r P'1 that satisfy:

tD. Van der Spoel; H. J. C. Berendsen, A. R van
Buuren, E. Apol, P. J. Meulenhoff, A. L. T. M. S~bers
and R Van Drunen (1995). Gromacs User ManuaL
available online at http:/ /md.chem.rug.nl/-gmx

~ Since this effective dimensionality canoot be
determined easily, obtained tree energies are known
only up to a constant factor and thus na mUts can be
given.

As a measW'e for the SUbspace overlap OHM between
N eigenvectors Jij Erom one set and M vectors Vi Erom
another (where the eigenvector sets can have been
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~;:j';"öb~1ned trom different simulations, or trom different
simulation fragments, or trom selected snapshots or
phase spare regions} the summed squared inner pro-
ducts (De Groot et al., 1996b) were calculated:

yielding zero tor two orthogonal spaces and one (for
M ~ N) for identical sets of vectors. Since two sets of
eigenvectors obtained Erom the same molecular system
span the same space, this measure of the overlap always
approaches 1 when M approaches the number of degrees
of freedom in the system. N is a sman number indicating
the dimensionality of the subspace that accounts for the
majority of aU atomic fluctuations, also referred to as the
essential subspace (Amadei et al., 1993). A value of 3 was
chosen for N for the analysis presented here, since more
than 69 % of the backbone positional fluctuations are
described by the three principal eigenvectors.

HBN energies were evaluated using the hb2net mod-
ule (Hooft et al., 1996) of the WHAT IF software package
(Vriend, 1~). Output "energies" of this knowledge-
based method are in units of ideal hYdrogen bonds, as
derived empiricany Erom a sman-molecule structure
database.
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