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WHY STUDYING THE SURFACE OF PROTEINS?

• Historically, the interest on protein surfaces came from studies on 
protein folding and packing of hydrophobic aminoacids 
(preferentially buried away from the solvent).

• Solvent accessibility as a way to quantify hydrophobic burial (Lee, 
B. and Richards, F. M. (1971) J. Mol. Biol. 55, 379–400): “The 
topology of the surface of a protein is intimately related to its 
function; [...] the solvent–protein interface is almost certainly 
related to the structure of the native molecule.”

hydrophilic
sidechains

hydrophobic
sidechains

unfolded protein folded protein
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WHAT YOU (MAY) HAVE ALREADY VISUALISED

All the atoms

Hen egg white lysozyme – 0.65 Å (PDB 2vb1) 

Fold van der Waals Surface
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DEFINITION OF MOLECULAR SURFACES
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A FEW COMMENTS

• All these surfaces rely on the van der Waals surface, which cannot 
be accurately determined! (diffuse distribution of the electron 
density surrounding the centre of each atom). For each atom, a 
van der Waals radius needs to be taken.

• Hydrogens are not always taken into account (eg X-ray structures): 
united-atom models instead for C, N, O and S to include the 
presence of 1–3 protons.

• The ratio contact surface to re-entrant surface can be a measure of 
the molecular surface roughness (rugosity).
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A FEW COMMENTS

• Connolly surfaces are complementary at the interface between 
two molecules (eg ligand/binding pocket).

• Same definitions apply for the related volumes: van der Waals 
volume, solvent-accessible volume, solvent-excluded volume, 
interstitial volume.
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CALCULATION OF THE SURFACES

• Two approaches to calculate surfaces: numerically or analytically.

• Two sets of variables always need to be defined first (besides the 
atomic coordinates):
- the van der Waals radii
- the probe radius (for water, rp=1.4–1.5 Å)

• The solvent molecule is approximated by a sphere: for small 
molecules (eg water, acetone, urea, MeCN, DMSO, PhH and 
cHxH) it may be OK but for larger (linear) molecules it may be 
questionable (eg HxH, OcH, OcOH).

• Various programs and algorithms: MS, MSMS, ACCESS, NACCESS, 
Molecular Surface, SURF etc.
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THE PROGRAMS YOU MAY USE (NON EXHAUSTIVE)

Simulation packages
• GROMACS: g_sas   ➙ calculates SASA

method: numerical (Double Lattice Cubic Method, DCLM)

• GROMOS (GROMOS++): sasa   ➙ calculates SASA
method: numerical (Lee–Richards)

Visualisation softwares
• VMD: measure sasa probe_radius $group_A [-restrict
$group_B] (B⊂A)   ➙ calculates SASA
method: numerical(?) (SURF) (can also use MSMS)

• PyMOL: by default, PyMOL shows the Connolly surface but 
calculates the SASA.
method: numerical(?)
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THE PROGRAMS YOU MAY USE (NON EXHAUSTIVE)

Specific programs
• MSMS: by default, uses extended atoms (otherwise use 
pdb_to_xyzr -h)   ➙ calculates SASA/Connolly surface
method: analytical
http://mgltools.scripps.edu/packages/MSMS

• NACCESS: by default ignores protons (otherwise naccess -h)
  ➙ calculates SASA
method: numerical (Lee–Richards)
http://www.bioinf.manchester.ac.uk/naccess

Many (dedicated or general) programs and packages can calculate 
molecular surfaces, generally only SASAs. The source code may be 
available.
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THE ROLLING-BALL ALGORITHM (GROMOS, NACCESS)

Historically, the first method (Lee, B. & Richards, F. M. (1971) J. Mol. 
Biol. 55, 379–400).

1.To mimic the effect of a water molecule rolling on the surface of 
the solute, the van der Waals surface is expanded by the radius of a 
water sphere (1.4–1.5 Å).
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THE ROLLING-BALL ALGORITHM (VARIATIONS)

Instead of calculating circle arc lengths, a grid-based approach is 
used.

• Shrake-Rupley algorithm (Shrake, A. & Rupley, J. A. (1973) J. Mol. 
Biol. 79, 351–371):

1.A uniformly distributed mesh of (92) test points {ti} equidistant from 
each hydrated (extended) atom (the central atom) is drawn.
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Biol. 79, 351–371):

1.A uniformly distributed mesh of (92) test points {ti} equidistant from 
each hydrated (extended) atom (the central atom) is drawn. 

2.Each test point is then defined as
occluded (buried) by a neighbouring
atom (a test atom of centre A and
hydrated radius r) if r > d(A,ti).

3.For each central atom, the SASA
is calculated by multiplying the
number of solvent-accessible test
points by the surface area value
corresponding to each test point.
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THE ROLLING-BALL ALGORITHM (VARIATIONS)

Instead of calculating circle arc lengths, a grid-based approach is 
used.
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• The z-sections are discretised
with a grid. Each cell is defined
as inside the atoms, outside or
in-between.
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

• The DCLM is an algorithmic variant of the
Shrake-Rupley approach (Eisenhaber, F. et al.
(1995) J. Comput. Chem. 16, 273–284).

• Improvements to speed up the computation.
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

Shrake-Rupley approach DCLM

Lists of neighbouring atoms (test atoms)Lists of neighbouring atoms (test atoms)Lists of neighbouring atoms (test atoms)
- no particular restriction in the 

generation of the cubic lattice
- searches through the whole 

grid for neighbours

- cubic lattice with a spacing of 
2rmax (rmax: largest extended 
radius in the molecule)

- limits the search in the central 
cell and in the cells in position 
±1 (similarly to PBC/minimum 
image convention in MD).
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

2rmax
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

Shrake-Rupley approach DCLM

Lists of neighbouring atoms (test atoms)Lists of neighbouring atoms (test atoms)Lists of neighbouring atoms (test atoms)
- no particular restriction in the 

generation of the cubic lattice
- searches through the whole 

grid for neighbours for each 
central atom

- cubic lattice with a spacing of 
2rmax (rmax: largest extended 
radius in the molecule)

- limits the search in the central 
cell and in the cells in position 
±1 (similarly to PBC/minimum 
image convention in MD).

Lists of buried surface test pointsLists of buried surface test pointsLists of buried surface test points
- checks all the combinations 

test atom–test point for each 
central atom

- starts from the principle that 
only test points lying in the 
area of overlap can be buried 
by a test atom

- uses a second cubic lattice
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

A

1

C

D

2 3 4

B

• Shrake-Rupley algorithm:
checks boxes A1–4, B1, B4, C1, 
C4 and D1–4

• DCLM:
checks only boxes A2–4 and B4
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THE DOUBLE CUBIC LATTICE METHOD (GROMACS)

• The DCLM is an algorithmic variant of the
Shrake-Rupley approach (Eisenhaber, F. et al.
(1995) J. Comput. Chem. 16, 273–284).

• Improvements to speed up the computation:
- a first cubic lattice for the generation of the

neighbour list (test atoms) for each central atom.
- a second cubic lattice for the list of the occluding atoms for 

each central atom.
- various optimisation methods for speed-up

eg: reduced numbers of squares, square roots and trigonometric 
functions to calculate; the distance criterion d (or d2) in the 
Shrake-Rupley algorithm is replaced by a dot product to save 
time.
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ANALYTICAL METHODS

• Areas are calculated using equations appropriate for the shape of 
the surfaces:
- A Lee-Richards surface consists of the union of convex spherical 

surfaces.
- A Connolly surface is composed of:
‣ convex spherical elements   ➙ contact surface
‣ saddle-shaped toroidal elements
‣ concave spherical elements

spheres
torus

 ➙ re-entrant surface
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ANALYTICAL METHODS

• Using the atomic coordinates, the van der Waals radii and the 
probe radius, a series of equations define all the geometric 
properties of the spherical and toroidal patches, eg:
- the centre, the 2 radii and the axial vector of all the tori,
- the position of the vertices and the concavity (height) of the 

concave pieces,
- the centre and the radius of the convex pieces.

• Each element surface is defined by a set of circular arcs, for which 
the centre, the radius and the end points need to be determined.

spheres
torus
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ANALYTICAL METHODS

• Using the atomic coordinates, the van der Waals radii and the 
probe radius, a series of equations define all the geometric 
properties of the spherical and toroidal patches, eg:
- the centre, the 2 radii and the axial vector of all the tori,
- the position of the vertices and the concavity (height) of the 

concave pieces,
- the centre and the radius of the convex pieces.

• Each element surface is defined by a set of circular arcs, for which 
the centre, the radius and the end points need to be determined.

spheres
torus

Connolly, M. L. (1985) J. Am. Chem. Soc. 
107, 1118–1124 
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WHAT CAN YOU DO WITH THESE SURFACES?

• Measure the surface area (vdW, SASA, Connolly etc) of residues/
atoms!
- from a simulation: variations with time
- compare between different states (folding, binding) or proteins
- compare with a reference (RSA, Relative Solvent Accessibility):

• Calculate contact/interaction surface area between proteins, 
domains etc:

Ideally, Si should be Connolly surface areas but finding a program 
can be difficult, so SASAs may be used instead.

RSAX =                       (reference: Ala–X–Ala)
ASAX,protein

ASAX,ref

CA,B = SA + SB – SA∪B BA
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WHY STUDYING THE SURFACE OF PROTEINS?

• Also used to study hydration
eg in implicit solvation models: GBSA (Generalized Born with 
Solvent Accessibility). GBSA is a GB model which includes a 
solvent accessibility term:

∆Gsolv: free energy of solvation of a solute (n atoms)
ai: accessible surface area of atom i
σi: solvation parameter of atom i (contribution to the free energy of 
solvation of atom i per surface unit area)
(cf Pramod)

• Connolly surfaces have been used in rational drug design and 
more generally in the study of protein–ligand and protein–protein 
interactions (eg docking of a ligand in binding pocket, 
identification of possible antigenic determinants on viruses).

∆Gsolv =∑ ai σi
i=1

n
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NUMERICAL METHODS VS ANALYTICAL METHODS

Analytical methods Numerical methods

- Generate a continuous 
surface.

- As surfaces are represented as 
formulae, any mathematical 
(eg differentiation) can be 
applied to it...

- ... but some methods have 
technical difficulties (eg: when 
the probe is tangent to 4 
atoms)

- Accurate calculation

- Can be slower and/or limited 
by the number of atoms.

- As the surface is discretised, it 
is not continuous.

- Approximate surface area 
(errors generally in the range 
of ±0.5–3 Å2).

- Can be faster, depending on 
the discretisation level.
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THINGS TO KEEP IN MIND

There can be slight differences between the values of surface areas 
given by different programs. They can be due to:

• the method itself
• the values of the van der Waals radii used
• the value of the probe radius: some programs will take a default 

value of 1.4 Å for water whereas others will take 1.5 Å
• the level of discretisation used in numerical methods: ∆z spacing 

(Lee-Richards), density of test points (Shrake-Rupley, DCLM)
• the level of description of the molecules: extended heavy atoms or 

use of hydrogens
• all other assumption implied by the method.
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THINGS TO KEEP IN MIND

There can be slight differences between the values of surface areas 
given by different programs. They can be due to:

• the method itself
• the values of the van der Waals radii used
• the value of the probe radius: some programs will take a default 

value of 1.4 Å for water whereas others will take 1.5 Å
• the level of discretisation used in numerical methods: ∆z spacing 

(Lee-Richards), density of test points (Shrake-Rupley, DCLM)
• the level of description of the molecules: extended heavy atoms or 

use of hydrogens
• all other assumption implied by the method.

Does the absolute value of the surface area matter?
Maybe not; often it is the change relative to a 
reference that is the most important or informative.
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That’s all!
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