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ABSTRACT: Residual dipolar couplings have recently found a wide range of applications
in high-resolution NMR of biomolecules in the liquid state. A nonisotropic orientational
distribution of a molecule of interest results in nonzero average dipolar coupling constants.
Here, we present an intuitive introduction to the alignment tensor and an elementary
derivation of key equations. © 2004 Wiley Periodicals, Inc. Concepts Magn Reson Part A 21A:

10–21, 2004
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INTRODUCTION

Although dipolar couplings are the dominant interac-
tions in solid state NMR of spin- 1

2
nuclei, they are

averaged to zero for isotropically reorienting mole-
cules in the liquid state. This makes it possible to
achieve high-resolution spectra with relative ease in
liquid state NMR. On the other hand, a wealth of
structural information is lost if dipolar couplings van-
ish. However, even in liquid state NMR, molecules
can be partially aligned, e.g., by external fields (mag-

netic or electric) or by anisotropic solvents (1– 8 ).
For example, in liquid crystalline solvents, the dis-
solved molecules are partially aligned through
steric and anisotropic interactions with the solvent
molecules, and dipolar couplings can be observed
(9, 10). The recent success and wide use of such
residual dipolar couplings is due to the develop-
ment and characterization of several new alignment
media such as bicelles (5 ), filamentous phage Pf1
(11), and polyacrylamide gels (12, 13), which make
it possible to create a relatively small, tunable de-
gree of alignment. This allows the spectroscopist to
adjust the alignment in such a way, that the size of
the average dipolar coupling is on the order of the
J couplings. In this case, the resulting spectra are
still simple, and dipolar coupling constants can be
measured relatively easy by comparing line split-
tings in isotropic and in aligned samples. Tech-
niques to measure residual dipolar couplings and a
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wide range of applications have been discussed in a
number of articles and reviews (2– 8 ).

Here, we revisit the fundamental question of how
to calculate the expected residual dipolar coupling
constant for a homonuclear (e.g., 1H–1H) or hetero-
nuclear (e.g., 15N–1H) spin pair. This turns out to be
a surprisingly simple calculation if we know the ori-
entation and the three principal components of the
so-called alignment tensor. This alignment tensor is a
key concept that is crucial to understand residual
dipolar couplings. However, in our experience, many
students and even seasoned practitioners in the field of
NMR have conceptual difficulties to fully understand
the physical meaning of the alignment tensor which
sometimes lead to serious misconceptions (vide in-
fra). This may result in part from the common prac-
tice in literature, to derive the alignment tensor using
mathematically elegant, but not very intuitive ap-
proaches based on spherical harmonics, their addition
theorems, Legendre polynomials, Wigner rotation
matrices, and a confusing number of angles between
various axes.

In contrast, we here use a streamlined geometric
approach similar to the original derivation by Saupe
(9, 10), which is based on the Cartesian representation
of vectors. Except for the most basic rules of matrix
and vector multiplication, only elementary mathemat-
ics is needed to derive the alignment tensor. As a
didactical aid on the way to understanding the align-
ment tensor, we discuss the related probability tensor.
Numerical examples and illustrating figures are used
to convey the physical meaning of these tensors. In
the Appendix, various expressions for the residual
dipolar coupling constants commonly found in liter-
ature are derived from the presented key results.

STATIC DIPOLAR COUPLING
HAMILTONIAN

We consider two spins I and S with an internuclear
vector R� (see Fig. 1). This vector can be expressed in
the form

R� � Rr�, [1]

where R is the distance between the two nuclei and r�
is a unit vector pointing in the direction of R� . Simi-
larly, the vector representing the external magnetic
field B� can be expressed in the form

B� � Bb� , [2]

where B is the magnitude of the static magnetic field,
and b� is a unit vector pointing in the direction of the
magnetic field. In the lab frame ( xL, yL, zL), where by
convention the magnetic field points along the zL axis,
the (truncated) dipolar coupling Hamiltonian has the
form (14):

�D � 2�D� Iz L SzL �
1

2
Ix L SxL �

1

2
Iy L SyL�.

[3]

If the spins I and S are heteronuclear, the second and
third term in the bracket can be neglected, resulting in
the simpler weak dipolar coupling Hamiltonian:

�D � 2�DIz L SzL [4]

(which has the same form as the weak heteronuclear J
coupling Hamiltonian). In both cases, the dipolar cou-
pling constant (which in the weak coupling limit
corresponds directly to the experimentally observed
line splittings in units of Hz) is given by (14):

D �
�

R3 �cos2� �
1

3�, [5]

where � is the angle between the internuclear vector
and the magnetic field (see Fig. 1). The term

� � �
3

8�2 �I�S�0� [6]

only depends on physical constants (14): the gyro-
magnetic ratios �I and �S of spin I and S, respec-
tively, the Planck constant � � h/2� and the perme-

Figure 1 Definition of the angle � between the internu-
clear vector R� (connecting spins I and S) and the magnetic
field vector B� . The unit vectors r� and b� point in the direction
of R� and B� , respectively.
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ability of vacuum �0. For example, for 1H–1H, 13C–
1H, and 15N–1H spin pairs, � � �360.3, �90.6, and
36.5 kHz Å3, respectively. The maximum possible
value of cos2� is 1 (for � � 0 or �), and hence,
according to Eq. [5], the maximum possible dipolar
coupling constant is

Dmax � �/R3�1 � 1/3	 � �2/3	�/R3, [7]

which corresponds, e.g., to 21.7 kHz for a 15N–1H
spin pair with distance R � 1.04 Å.

Remember that the scalar product between two
unit vectors is identical to the cosine of the angle �
between the two vectors. Hence, the term cos � in Eq.
[5] can always be expressed in the form

cos � � b�Tr�. [8]

Here, b�T is a row vector (the transpose of the column
vector b� ) that allows us to write the scalar product of
the two vectors as a usual matrix product between the
1 
 3 matrix b�T and the 3 
 1 matrix r� (vide infra).

TIME-DEPENDENT AND AVERAGE
DIPOLAR COUPLING HAMILTONIAN

Now we consider the two spins I and S to be part of
a molecule in solution. In the lab frame, the magnetic
field vector B� is constant (pointing along the zL axis),
but the internuclear vector R� is now time-dependent
[see Fig. 2(A)]. For simplicity, we assume that the
molecule is rigid (no internal dynamics and constant
distance R), such that the time dependence of R� is
solely due to the rotational tumbling motion of the
molecule. Hence, the term cos � (and as a result also
the dipolar coupling constant D and the dipolar cou-
pling Hamiltonian) is time-dependent. For proteins,
the rotational correlation time is on the order of nano-
seconds and on the time scale of the NMR experi-
ment, only the time-averaged dipolar Hamiltonian �D

gives rise to splittings in the spectrum (relaxation
effects caused by the fluctuations of the dipolar Ham-
iltonian will not be considered here). The time-aver-
aged dipolar coupling constant

D� �
�

R3 �cos2� �
1

3� [9]

represents the so-called residual dipolar coupling
constant, which depends on the average alignment of
the molecule.

OUTLINE AND KEY RESULTS

The goal of this manuscript is to derive a general
approach for the calculation of D� for any pair of spins
if the “alignment properties” of the molecule are
known. Before we go into the formal derivation, we
give a brief outline of the steps and state the final
result. First, we move from the lab frame ( xL, yL, zL)
[cf. Fig. 2(A)] to a frame of reference ( x, y, z) that is
fixed to the molecule [cf. Fig. 2(B)]. In this frame of
reference, the term cos2� can be conveniently ex-
pressed with the help of a probability tensor P, which
is a second order approximation of the orientational
probability distribution of the direction of the external
magnetic field in the molecular fixed frame of refer-
ence (6, 15). This probability tensor P can be repre-
sented by an ellipsoid [cf. Fig. 3(A)] with a fixed
orientation in the chosen molecular frame ( x, y, z).

Figure 2 Effect of molecular tumbling of a rigid molecule
as seen (A) from the lab frame of reference (with axes xL,
yL, zL) and (B) from an arbitrary molecular frame of ref-
erence (with axes x, y, z). In the lab frame (A), the
magnetic field B� is constant and points by definition along
the zL axis, whereas the internuclear vector R� keeps chang-
ing its direction. In a molecular frame (B), the situation is
reversed: here, any given internuclear vector is constant,
whereas the orientation of the magnetic field is time-depen-
dent.
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The principal values Px̃, Pỹ, and Pz̃ of the probability
tensor (i.e., the lengths of the half axes of the prob-
ability ellipsoid) are the probabilities to find the mag-
netic field along the corresponding principal axes of
the probability ellipsoid, and hence Px̃ � Pỹ �
Pz̃ � 1.

For example, for an isotropically reorienting mol-
ecule, Px̃ � Pỹ � Pz̃ � 1/3, and the probability
ellipsoid is reduced to a sphere [see Fig. 4(C)]. On the
other hand, if a molecule is fully aligned, Px̃ � Pỹ �
0 and Pz̃ � 1 (by convention, the principal elements
are ordered with increasing magnitude), i.e., the prob-
ability tensor is reduced to a single line in the direc-
tion of the magnetic field.

In general, the principal axes of the probability
ellipsoid define a special molecular fixed axis system
( x̃, ỹ, z̃), in which the calculation of residual dipolar
coupling constants is especially simple [see Fig.
3(B)]: If we know the three Cartesian components rx̃,
rỹ, and rz̃ of any given internuclear unit vector r� in
this principal axis system, the term cos2� in Eq. [8] is
simply given by

cos2� � Px̃r x̃
2 � Pỹr ỹ

2 � Pz̃r z̃
2. [10]

If this simple equation (derived below) is inserted into
Eq. [9], the residual coupling constant can be pre-
dicted for any arbitrary spin pair in a molecule, as
long as the orientation and principal values of the
probability tensor are known.

With this key result, we can calculate everything,
and we could stop here, except that residual dipolar
coupling constants are commonly not expressed in
terms of the introduced probability tensor P (corre-
sponding in general to a real symmetric 3 
 3 matrix
with trace 1) but in terms of its traceless part (its
“resolvent”) P � 1/3 1, which is called the alignment
tensor A (5 ):

Figure 3 The molecule, a given internuclear vector R� and
the probability ellipsoid (a graphical representation of the
probability tensor P, cf. Eq. [25]) are shown (A) in an
arbitrarily chosen molecular frame [cf. Fig. 2(B)] and (B) in
the special coordinate system (with axes x̃, ỹ, z̃) defined by
the principal axes of the probability ellipsoid.

Figure 4 Examples of three characteristic probability ellipsoids (graphical representations of the
probability tensor P, cf. Eq. [25]) as seen from the principal axis system with axes x̃, ỹ, z̃ [cf. Fig.
3(B)]. (A) An axially symmetric probability ellipsoid with Px̃ � Pỹ � 0.25 and Pz̃ � 0.5. (B) A
rhombic probability ellipsoid with Px̃ � 0.2, Pỹ � 0.3, and Pz̃ � 0.5. (C) An isotropic probability
ellipsoid with Px̃ � Pỹ � Pz̃ � 1/3.

RESIDUAL DIPOLAR COUPLING CONSTANTS 13



A � P �
1

3
1. [11]

The three principal components Ax̃, Aỹ, and Az̃ of the
alignment tensor A are simply given by

Ax̃ � Px̃ �
1

3
, Aỹ � Pỹ �

1

3
, Az̃ � Pz̃ �

1

3
,

[12]

and the principal axes of A and P are identical.
Note that in contrast to the probability tensor P

(see Figs. 3 and 4), the alignment tensor A cannot be
represented as an ellipsoid, because one or two of the
principal components Ax̃, Aỹ, and Az̃ of the alignment
tensor are negative if any of the three components is
nonzero due to Ax̃ � Aỹ � Az̃ � 0. Alternative
graphical representations of the effects of the align-
ment tensor are shown in Figures 5 and 6 (vide infra).

In terms of the principal components of the align-
ment tensor, the term (cos2� � 1/3) in the equation for
the residual dipolar coupling constant (Eq. [9]) can be
expressed as

�cos2� �
1

3� � Ax̃r x̃
2 � Aỹr ỹ

2 � Az̃r z̃
2. [13]

If this equation is inserted into Eq. [9], it is again
possible to predict the residual coupling constant for
any arbitrary spin pair in a molecule, provided that the
orientation and principal values of the alignment ten-
sor are known.

Conversely, the alignment tensor A (or the proba-
bility tensor P) can be determined if a sufficient
number of experimental dipolar coupling constants
are measured for a given molecule (16). As will be
shown below, the alignment tensor A (and the prob-
ability tensor P) is characterized by five independent

Figure 5 Graphical representations of the alignment tensors, which correspond to the three
probability tensors shown in Figure 4(A–C). The principal components of the alignment tensor are
(A) Ax̃ � Aỹ � 0.25 � 1/3 � �1/12, Az̃ � 0.5 � 1/3 � �1/6, (B) Ax̃ � 0.2 � 1/3 � �2/15,
Aỹ � 0.3 � 1/3 � �1/30, Az̃ � 0.5 � 1/3 � 1/6, and (C) Ax̃ � Aỹ � Az̃ � 1/3 � 1/3 �
0. The plots show the surfaces where (r�TAr�)/R3 � 1 Å�3 (light gray) or �1 Å�3 (dark gray) if the
x̃, ỹ, and z̃ axes are labeled in units of Å.

Figure 6 For the three cases shown in Figures 4 and 5 with (A) Ax̃ � Aỹ � �1/12, Az̃ � �1/6,
(B) Ax̃ � �2/15, Aỹ � �1/30, Az̃ � 1/6, and (C) Ax̃ � Aỹ � Az̃ � 0, the magnitude of the
scaling factor (cos2� � 1/3) is coded on a unit sphere as a function of the orientation of the
internuclear vector R� (white: vanishing scaling factor). Positive and negative scaling factors are
denoted by the respective sign.
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parameters. Therefore, at least five dipolar coupling
constants need to be measured in order to determine
the five unknown parameters (16). In many cases, it is
also possible to accurately predict the alignment ten-
sor A (17) or the probability tensor, P for a given
molecule in a given liquid crystalline solvent, and
hence to predict the expected dipolar coupling con-
stants for a proposed molecular structure from first
principles.

DERIVATION OF THE PROBABILITY AND
ALIGNMENT TENSORS

In an arbitrarily chosen molecular frame with axes ( x,
y, z) [see Fig. 2(B)], a given internuclear vector R� is
constant (still assuming a rigid molecule without in-
ternal dynamics):

R� � Rr� � R�rx

ry

rz

� . [14]

However, in this frame of reference, the direction of
the magnetic field vector B� is time-dependent if the
molecule tumbles in solution:

B� � Bb� � B�bx�t	
by�t	
bz�t	

� . [15]

The definition of cos � via the scalar product of the
unit vectors b� and r� (cf. Eq. [8]) is valid in any frame
of reference. Hence, we can express cos � in the
molecular frame as a function of the components of
the unit vectors b� and r�, which point in the (varying)
direction of the magnetic field B� and of the (constant)
internuclear vector R� , respectively:

cos � � b�T � r� � �bx�t	 by�t	 bz�t		�rx

ry

rz

�
� bx�t	rx � by�t	ry � bz�t	rz, [16]

and

cos2� � �bx�t	rx � by�t	ry � bz�t	rz	
2

� bx
2�t	r x

2 � bx�t	by�t	rxry � bx�t	bz�t	rxrz

�by�t	bx�t	ryrx � by
2�t	r y

2 � by�t	bz�t	ryrz

�bz�t	bx�t	rzrx � bz�t	by�t	rzry � bz
2�t	r z

2.

[17]

Note that Eq. [17] can also be expressed in the form

cos2�

� �rx ry rz	� bx
2�t	 bx�t	by�t	 bx�t	bz�t	

bx�t	by�t	 by
2�t	 by�t	bz�t	

bx�t	bz�t	 by�t	bz�t	 bz
2�t	

��rx

ry

rz

�.
[18]

Hence, the time average of cos2� is given by

cos2�

� �rx ry rz	� bx
2�t	 bx�t	by�t	 bx�t	bz�t	

bx�t	by�t	 by
2�t	 by�t	bz�t	

bx�t	bz�t	 by�t	bz�t	 bz
2�t	

��rx

ry

rz
�

� r�TPr�. [19]

We call the matrix

P � � bx
2�t	 bx�t	by�t	 bx�t	bz�t	

bx�t	by�t	 by
2�t	 by�t	bz�t	

bx�t	bz�t	 by�t	bz�t	 bz
2�t	

� [20]

the probability matrix. For a known probability ma-
trix, P, the residual dipolar coupling constant (Eq. [9])
is given by

D� �
�

R3 �r�TPr� �
1

3�. [21]

The matrix P is real, symmetric, and has a trace of
1 because

tr�P � Pxx � Pyy � Pzz � bx
2�t	 � by

2�t	 � bz
2�t	

� �bx
2�t	 � by

2�t	 � bz
2�t		 � 1, [22]

since by definition, b� is a unit vector, and hence,
bx

2(t) � by
2(t) � bz

2(t) � 1 for all times t. Therefore,
P is fully specified by only five independent param-
eters. The matrix P can be represented graphically as
an ellipsoid (see Figs. 3 and 4). The three principal
axes x̃, ỹ, and z̃ of this ellipsoid are defined by the
three eigenvectors of the matrix P and the lengths of
the three half axes are defined by the eigenvalues Px̃,
Pỹ, and Pz̃ [see Fig. 3(A)].

In the special frame of reference defined by this
principal axis system [see Fig. 3(B)], the matrix P is
diagonal:
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P � �Px̃ 0 0
0 Pỹ 0
0 0 Pz̃

�. [23]

In this case the eigenvalues (principal values) Px̃ �
bx̃

2, Pỹ � bỹ
2, and Pz̃ � bz̃

2 are the probabilities to find
the magnetic field along the principal axes x̃, ỹ, and z̃,
respectively. Therefore we call P simply the proba-
bility tensor. [Rigorously, P corresponds to the sum of
the zero and second-order term of a spherical harmon-
ics expansion of the probability distribution function
describing the orientation of a reference vector rela-
tive to a rigid body (4, 15).]

In the principal axis system, Eq. [21] for the cal-
culation of the residual dipolar coupling reduces sim-
ply to

D� �
�

R3 �Px̃rx̃
2 � Pỹrỹ

2 � Pz̃rz̃
2 �

1

3� . [24]

For example, in the static case,

b� � �bx

by

bz

�
is constant, and hence,

P � � bx
2 bxby bxbz

bxby by
2 bybz

bxbz bybz bz
2
�. [25]

The matrix has a much simpler form in the principal
axis frame ( x̃, ỹ, z̃), where the z̃ axis is parallel to the
vector b� . In this reference frame,

b� � �bx̃

bỹ

bz̃

� � �0
0
1
� and P � �0 0 0

0 0 0
0 0 1

�.

[26]

In this case, the probability ellipsoid is reduced to a
line along the z̃ axis and the dipolar coupling constant
is

D� � D �
�

R3 �r z̃
2 �

1

3� . [27]

For a completely isotropically reorienting molecule,
the averages bx(t)by(t), bx(t)bz(t), by(t)bz(t) are
zero, and Px̃ � Pỹ � Pz̃ � 1/3, i.e., the probability
matrix:

P � �
1

3
0 0

0
1

3
0

0 0
1

3

� [28]

is diagonal in any molecular fixed frame of reference.
Hence, there is an equal probability of 1/3 for the
magnetic field direction to point along all three axes
of reference. The corresponding probability ellipsoid
is a sphere with radius 1/3 [see Fig. 4(C)], and the
residual dipolar coupling constant is

D� �
�

R3 �1

3
�r x̃

2 � r ỹ
2 � r z̃

2	 �
1

3� � 0. [29]

Figure 4(A) shows an example of an axially sym-
metric probability ellipsoid with the principal values
Px̃ � Pỹ � 0.25 and Pz̃ � 0.5. Figure 4(B) shows
an example without axial symmetry, where Px̃ � 0.2,
Pỹ � 0.3, and Pz̃ � 0.5. Note that the lack of axial
symmetry simply means that there are two different
probabilities Px̃ � Pỹ for the magnetic field to point
along the principal axes x̃ and ỹ of the molecular-fixed
probability tensor. However, this does by no means
imply that in the lab frame there are different proba-
bilities for the molecule to be aligned along the xL or
yL direction. For example in the case shown in Figure
4(B), Px̃ � 0.2, Pỹ � 0.3, and Pz̃ � 0.5 are the
probabilities that the x̃, ỹ, and z̃ axes are aligned
parallel to B0.

In the NMR literature, it is not customary to con-
sider the probability tensor P (which can be nicely
depicted as an ellipsoid), but to use its traceless part
which is called the alignment tensor

A � P �
1

3
1. [30]

If we multiply A from the left with the unit row vector
r�T and from the right with the column vector r� and
using Eq. [19] and Eq. [30], we get

r�TAr� � r�T�P �
1

3
1�r�

� r�TPr� �
1

3
r�Tr�

� cos2� �
1

3
, [31]
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which can also be used to calculate the residual dipo-
lar coupling constant in Eq. [9] or [21]:

D� �
�

R3 �r�TAr�	. [32]

P and A have the same principal axis system ( x̃, ỹ, z̃)
(except for a possible reordering of the axis labels if
the convention is used that �Px̃� � �Pỹ� � �Pz̃� and
�Ax̃� � �Aỹ� � �Az̃�), and the principal values are
related by

Ax̃ � Px̃ �
1

3
, Aỹ � Pỹ �

1

3
,

and

Az̃ � Pz̃ �
1

3
, [33]

with Ax̃ � Aỹ � Az̃ � 0.
In the principal axis system

�cos2� �
1

3� � Ax̃r x̃
2 � Aỹr ỹ

2 � Az̃r z̃
2, [34]

and hence, the residual dipolar coupling constant is
given by

D� �
�

R3 � Ax̃r x̃
2 � Aỹr ỹ

2 � Az̃r z̃
2	. [35]

The alignment tensor cannot be represented as an
ellipsoid, because at least one of the principal values
is always negative if A � 0.

In Figure 5, we show a graphical representation of
the A tensors which corresponds to the P tensors
shown in Figure 4. The plots show the surfaces where
the term �r�TAr�/R3� is constant. Hence, if spin I is
assumed to be located in the origin, the plots show the
possible locations of spin S for which the residual
dipolar coupling constants has the same magnitude.
For the case of an isotropically reorienting molecule
(spherical probability tensor), the residual dipolar
coupling is always zero, and no such surface exists.

The dependence of the scaling factor (cos2� � 1/3)
on the orientation of the internuclear vector is some-
times shown by the color of a unit sphere. For the
three cases shown in Figure 4 and 5, the correspond-
ing grayscale coded surface representations of the
alignment tensors are shown in Figure 6. The gray-
scale intensity represents the scaling factor of a resid-
ual dipolar coupling constant if spin I is located at the

origin and spin S is moved over the surface, i.e.,
assuming a constant internuclear distance.

For example, in the axially symmetric case shown
in Figure 6(A) with Ax̃ � Aỹ � �1/12 and Az̃ �
1/6, the scaling factor (cos2� � 1/3) is zero if the
z̃-component of the internuclear vector is rz̃ � �1/3,
which is straightforward to see if Eq. [34] is set to
zero and using rx̃

2 � rỹ
2 � 1 � rz̃

2. This corresponds
to an angle of � � arccos�1/3 � 54.74° (the magic
angle) between the internuclear vector and the z̃-axis.
For the case shown in Figure 6(B) with Ax̃ � �2/15,
Aỹ � �1/30, and Az̃ � 1/6, the polar angle �, when
the scaling factor is zero, depends also on the azi-
muthal angle � between the x̃-axis and the projection
of r� on the x̃/ỹ plane. For example, in the x̃/z̃ plane,
the scaling factor is zero if rz̃ � 2/3 [corresponding
to � � arccos(2/3) � 48.19°], and in the ỹ/z̃ plane, the
scaling factor is zero if rz̃ � �1/6 (� � arccos�1/6
� 65.91°). In the isotropic case shown in Figure 6(C),
the scaling factor (cos2� � 1/3) is zero for all orien-
tations of the internuclear vector R� .

APPENDIX

In the Appendix, the key equations (Eqs. [24] and
[35]) for the calculation of the residual dipolar cou-
pling constant D� are reexpressed in various more or
less complicated forms found in literature. If the unit
vector r� is defined in terms of the polar coordinates �
and � in the principal axis system of the alignment
tensor A, then

r� � �rx̃

rỹ

rz̃

� � �sin � cos �
sin � sin �

cos �
� [36]

and hence (according to Eq. [34]):

�cos2� �
1

3� � Ax̃sin2� cos2� � Aỹsin2� sin2�

� Az̃cos2�. [37]

This can be simplified by noting that cos2� � (1 �
cos 2�)/2 and sin2� � (1 � cos 2�)/2:

�cos2� �
1

3� �
Ax̃

2
sin2� �

Ax̃

2
sin2� cos 2�

�
Aỹ

2
sin2� �

Aỹ

2
sin2� cos 2�

� Az̃ cos2� �
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Ax̃ � Aỹ

2
sin2��

Ax̃ � Aỹ

2
sin2� cos 2� � Az̃cos2�.

[38]

Since A is a traceless matrix, Ax̃ � Aỹ � �Az̃, and
we can rewrite Eq. [38] as

�cos2� �
1

3� � Az̃�cos2� �
sin2�

2 �
�

Ax̃ � Aỹ

2
sin2� cos 2�. [39]

The prefactor of Az̃ can be further simplified by
using the relation sin2� � 1 � cos2�:

cos2� �
sin2�

2
� cos2� �

�1 � cos2�	

2

�
1

2
�3 cos2� � 1	. [40]

Thus, we arrive at

�cos2� �
1

3� �
Az̃

2
�3 cos2� � 1	

�
Ax̃ � Aỹ

2
sin2� cos 2�. [41]

Equation [41] can alternatively be expressed in
terms of the principal values Sx̃, Sỹ, and Sz̃ of the
Saupe matrix (or order matrix) S, which is simply the
alignment matrix A scaled by a factor of 3/2, if the
optical axis of the liquid crystal is collinear with the
direction of the magnetic field (9, 10):

S � 3/2A. [42]

Hence,

�cos2� �
1

3� �
1

3
�Sz̃�3 cos2� � 1	

� �Sx̃ � Sỹ	sin2� cos 2�. [43]

Often, the axial component Aa of the alignment
tensor is defined as (5 )

Aa �
3

2
Az̃ � Sz̃, [44]

and the rhombic component Ar of the alignment ten-
sor is defined as

Ar � Ax̃ � Aỹ �
2

3
�Sx̃ � Sỹ	. [45]

With these definitions, we can express Eqs. [41]
and [43] as

�cos2� �
1

3� �
1

3 �Aa�3 cos2� � 1	

�
3

2
Arsin2� cos 2��, [46]

which in turn is often written as

�cos2� �
1

3� �
Aa

3 ��3 cos2� � 1	

�
3

2
R sin2� cos 2��

�
Aa

3
��3 cos2� � 1	

� � sin2� cos 2�, [47]

where

R �
Ar

Aa
[48]

is called the rhombicity of the alignment tensor and

� �
Ax̃ � Aỹ

Az̃
�

Sx̃ � Sỹ

Sz̃
�

3

2
R [49]

is called the asymmetry parameter, which describes
the deviation from axially symmetric ordering (6 ).

So far, we have assumed a rigid molecule that
tumbles in solution. In the presence of internal mo-
tions the derivation of residual dipolar couplings be-
comes more complicated (6, 18, 19). Provided the
alignment process is not affected by intramolecular
motion, the analysis is relatively straightforward. If
the internal motion of the internuclear vector r� is
axially symmetric with respect to the average orien-
tation r�av, the dipolar coupling expected for this av-
erage orientation is scaled by a factor �, which is
identical to a generalized order parameter S (0 � S �
1) (18). The latter corresponds mathematically to the
spin relaxation order parameter (19, 20), but exhibits
a sensitivity to motions extending to the millisecond
time scale (6, 18). This leads to the following equa-
tion of the residual dipolar coupling constant:
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D� � S
�

3

Aa

R3 ��3 cos2� � 1	 � � sin2� cos 2�.

[50]

This expression is often rewritten using the maximum
dipolar coupling Dmax � (2/3)�/R3 (cf. Eq. [7]) or
the so called magnitude of the residual dipolar cou-
pling tensor Da � DmaxAa/ 2 (7 ):

D� � SDa��3 cos2� � 1	 � � sin2� cos 2�

� S
Dmax

2
Aa��3 cos2� � 1	

� � sin2� cos 2�}

� SDmax Aa�P2�cos �	 �
�

2
sin2� cos 2��,

[51]

where P2( x) � (3 cos2x � 1)/ 2 is the second-order
Legendre polynomial.

Finally, we use the results derived in this manu-
script to introduce the concepts of the generalized
degree of order (GDO) of a given alignment tensor A
(22) and the generalized angle between two different
alignment tensors A(1) and A(2) (23).

In complete analogy to the scalar product between
two real vectors, the scalar product between two real
matrices (e.g., two alignment matrices A(1) and A(2))
is defined as

�A�1	�A�2	� � �
i, j

Aij
�1	Aij

�2	 [52]

and the norm �A� of the real matrix A is given by

�A� � 	�A�A� � 	�
i, j

Aij
2 . [53]

The maximum order is found for the static case,
where the probability tensor Pmax is given by Eq. [26]
in the principal axis system. The corresponding max-
imum alignment tensor Amax � Pmax � 1/3 1 has the
form

Amax � ��1/3 0 0
0 �1/3 0
0 0 2/3

�. [54]

The norm of Amax is given by

�Amax� � 	1

9
�

1

9
�

4

9
� 	2

3
. [55]

The GDO of a given order matrix A can be defined as

GDO �
�A�

�Amax�
� 	3

2
�A�. [56]

In terms of the Saupe matrix S � 3/2A (cf. Eq. [42]),
this can be written as (6, 22)

GDO � 	2

3
�S�. [57]

In literature, the symbol � is often used for the GDO,
but we do not use the symbol here in order to avoid
confusion with the polar angle � defined in Eq. [36].

The GDO is independent of the molecular-fixed
frame, in which the alignment tensor A is expressed.
In the principal axis system only the diagonal ele-
ments of A are nonzero and Eq. [56] simplifies to

GDO � 	3

2
	Ax̃

2 � Aỹ
2 � Az̃

2. [58]

For axially symmetric alignment tensors ( Ax̃ �
Aỹ � �Az̃/ 2) this simplifies further to (22):

GDO � 	3

2 �1

4
Az̃

2 �
1

4
Az̃

2 � Az̃
2� �

3

2
	Az̃

2

�
3

2
�Az̃� � �Sz̃�. [59]

With the help of the scalar product, we can also
define the generalized angle � between two alignment
tensors A(1) and A(2), which correspond, e.g., to two
different alignment media.

If the matrix representations of A(1) and A(2) are
given in a common molecular frame of reference, the
cosine of the generalized angle � between these align-
ment tensors can be defined as the normalized scalar
product between them (23):

cos � �
�A�1	�A�2	�

�A�1	
A�2	�
. [60]
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