Phylogenetics

BIOL3004 electives

Evolution

The aim is to reconstruct the evolutionary history and relationships among the sequences you have collected using blast and clustal

Human
Mouse
Drosophila
Honey bee
Fern
Wheat
Pine

Sequences evolve over time

- Changes include point mutations and insertions and deletions.
- Changes are subject to natural selection - the differences you observe are the combination of several processes
  - Speciation creates branches - the sequences are now in two different species, and can evolve separately
  - Genes can be duplicated within the genome, and the two copies become distinct - e.g. specialised functions.
  - Genes can be lost from a lineage
  - Genes are sometimes transferred between lineages

Sequence evolution terminology

- Sequence similarity is a measure of identical or conserved amino acids
- Sequence homology indicates descent from a shared common ancestor
- Sequences are orthologous if they not only descend from a common ancestor, but have the same function, unaltered during that time
- Sequences are paralogous if they descend from a common ancestor, but have altered function or are the result of gene duplication.
- (rare) A xenologue is transferred from another species.

Constructing a phylogenetic tree from a MSA

- There are three main classes of methods:
  - distance matrix methods (ClustalX, Phylip)
  - parsimony (Phylip)
  - maximum likelihood - too slow and complex for an introductory project
- Additionally:
  - testing reliability of tree (bootstrapping)
  - drawing and presenting trees (TreeView)

Rooted and unrooted (radial) trees

The rooted tree includes information about time and origin
Distance matrix methods

- The sequences in the MSA are compared to each other pairwise and it is determined how different they are to each other.
- The pairwise distance matrix contains the results of all the comparisons.

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Mouse</th>
<th>Rat</th>
<th>Dog</th>
<th>Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Mouse</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Rat</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dog</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cat</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Constructing a distance tree in ClustalX

- Make sure the sequences in the window are aligned (either just recently aligned, or by importing a saved alignment).
- Go to the “Tree” menu.
- Turn on the “Correct for multiple substitutions” option (your sequences are unlikely to be similar enough not to need this).
- Run “Draw Tree”.
- Output is filename.ph, a tree in New Hampshire (Newick) Format.
- You can also try the other options and compare the trees you get.

New Hampshire (Newick) notation

- Evolutionary trees are easiest to work with and understand as diagrams.
- However, not all evolutionary programs can draw trees and diagrams can’t be transferred between programs.
- New Hampshire format is the format used for text description of trees and to allow easy movement between programs.
- It is useful to be familiar with this format and be able to translate between it and tree diagrams.

New Hampshire (Newick) format for trees

(((Human, Mouse), (Drosophila, Honey bee)), (Fern, (Wheat, Pine)));

New Hampshire (Newick) format with branch lengths

(((Human:0.05, Mouse:0.06):0.14, (Drosophila:0.11, Honey bee:0.11):0.09):0.10, (Fern:0.13, (Wheat:0.06, Pine:0.07):0.07):0.17);
**TreeView**

- Use TreeView to draw a tree in the New Hampshire format.
- TreeView draws four types of trees: radial (unrooted), cladogram, square cladogram and phylogram. Use radial and phylogram, as only these two show branch lengths correctly.

**Parsimony analysis**

- The principle of parsimony is to find the tree which has the smallest number of changes required to get the multiple sequence alignment.
- Eg a position where cat, dog and human have Glycine and mouse and rat have Threonine.

**Parsimony in Phylip**

- You need an output file from clustal for phylip input (.phy)
- The phylip program is called protpars (dnaphrs)
- The program calculates the parsimony score for a given tree, then tries other trees and sees if the score is improved.
- Parsimony (particularly for many sequences) is typically slower than distance methods.

```
Protein parsimony algorithm, version 3.6
Setting for this run:
U                 Search for best tree?  Yes
J   Randomize input order of sequences?  No, use input order
O                        Outgroup root?  No, use as outgroup species 1
T              Use Threshold parsimony?  No, use ordinary parsimony

Phylip in general**

- Phylip doesn’t have a fancy user-interface. In windows, you will get a plain blue window with some text options, firstly, to enter the name of the input data file (eg mydata.phy)
- When you run a phylip program, you will see a menu list of options, and you type in the letter on the left to change that option.
- When there are multiple options for a letter, keep entering that letter to cycle through the options.
- Type “y” once you have changed the required options to run the phylip program.

**Phylip menu**

```
Protein parsimony algorithm, version 3.6
Setting for this run:
U                 Search for best tree?  Yes
J   Randomize input order of sequences?  No, use input order
O                        Outgroup root?  No, use as outgroup species 1
T              Use Threshold parsimony?  No, use ordinary parsimony

**Phylip output**

- Phylip always outputs a file called outfile and sometimes an outtree from each program. This will overwrite and replace any previous files with the same name.
- After running any phylip program, immediately rename the outfile (and outtree) files to something unique, and useful; eg mydata.dst, mydata.nei, mydatatree.prs, mydatatree.nei.
- These files are all text files, and you can read them using Wordpad or any other text editor.
- The outtree files are Newick format you can open in Treeview.
Distance methods in Phylip

- You can also construct a neighbor-joining tree using phylip programs.
- The same (.phy) input file is used, but the program to run is protdist (dnadist). The outfile contains the distance matrix (intermediate step).
- This outfile becomes the infile to neighbor, which calculates the neighbour-joining tree.
- Phylip allows a number of options, such as the distance method used.

Testing the quality of a tree

- You can now compare the distance matrix tree to the parsimony tree. They may not be the same, but are the differences important?
- Is there enough evidence in the MSA to support one branching pattern over another?
- You can “bootstrap” your distance tree to see how reliable different parts of the tree are

Bootstrapping

- From the original multiple sequence alignment, “pseudoreplicate” multiple sequence alignments are created by randomly selecting columns.
- Statistically, these pseudoreplicates are similar, but not identical, to the original.
- For each pseudoreplicate, the tree is calculated.
- For each branch in the original tree, we count how many times the pseudoreplicate trees have the same branch.
- Note that we are repeating the complete analysis multiple times - this can be slow!

What do the bootstrap values mean?

- Bootstrap values for phylogenetic trees do not follow typical statistical behaviour
- Bootstrap value 95% : actually close to 100% confidence in that branch
- Bootstrap value 75% : often close to 95% confidence
- Bootstrap value 60% : much lower confidence
- Less than 50% bootstrap: no confidence in that branch over an alternative

Bootstrapping in ClustalX

- First, calculate your tree as before (“Draw tree”) producing filename.ph
- Then, select the “Bootstrap tree” option in the Tree menu. Try 100 bootstraps first. If that goes quickly, rerun with 1000 bootstraps.
- The output is called filename.phb, and is also a Newick tree, but it includes the bootstrap values.
- Be careful when bootstrapping. Make sure you are bootstrapping with the same options you drew the tree with, and that the tree is in filename.ph.
- Bootstrapping in Phylip: full details at http://foo.maths.uq.edu.au/twiki/bin/view/Phylip/PhylipBootstrapping

http://www.mouthmag.com/issues/58/number58.htm

Bootstrapped tree

http://www.mouthmag.com/issues/58/number58.htm
Treeview with bootstrap values

- In ClustalW, Tree menu, Output tree format options, change “Phylip bootstrap position” from BRANCH to NODE.
- Bootstrap tree (filename.phb)
- Import filename.phb into Treeview, displaying as phylogram
- Select display option “Show internal edge labels”
- Ignore the “TRICHOTOMY” at the base of the tree, or edit filename.phb first, deleting it.

Examining the alignment for unusual regions

- Expect there to be “families” or clusters of sequences with similar patterns from close species. These are often visible in the clustal alignment.
- However, some sequences may appear part of one family in one region of the alignment, and part of another in another part.
- To test the difference between regions, prepare smaller alignments containing the separate regions, and construct the distance tree with bootstrap values for each in ClustalX

References

- Phylogenetics is a huge field, with a large number of techniques and software
- Methods are covered in more depth in MATH2210 and BIOL3014
- Commonly-used software: Phylip, PAUP*, MEGA
- Index to phylogenetic software at http://evolution.genetics.washington.edu/phylip/software.html
- Books: Felsenstein; Li & Graur; Nei & Kumar