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Free Energy Perturbation (FEP)

A method for doing free energy (or free enthalpy) calculations
in which an ensemble average of an exponential of the free
energy divided by the product of the gas constant and abso-
lute temperature is evaluated. See Free Energy Calculations:
Methods and Applications and Free Energy Perturbation
Calculations.
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PMF = potential of mean force; SPC = simple pﬂ'I_HE
charge; US = umbrella sampling; WHAM = weighted his-
togram analysis method.

1 INTRODUCTION

The calculation of free energy has been described as the
‘Holy Grail’ of computational chemistry. Many, if not most.

o
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of the physical properties a chemist (or biochemist) could
wish to determine by calculation or experiment depend on
the free energy of the system. Essentially the free energy is
a measure of the probability of finding a system in a given
state. A difference in free energy gives the relative probability
of finding the system in one state as opposed to another. For
example, the binding affinity of a ligand to its acceptor is given
by the difference in free energy between the complex and the
ligand plus acceptor free in solution. In a similar manner the
direction and extent to which a chemical reaction will proceed,
the phase behavior of a compound, the mixing behavior of
different compounds, or even the response of a system to the
application of external pressure all depend on the relative free
energy of different states of a system.

From basic physical chemistry we know that the Gibbs
(free) energy of association AGa, of a ligand X interacting
with a receptor ¥ with an association constant, K is given by

AGy = —kpTInK,
[XY]

Ka XI7] 1)
where kp is Boltzmann's constant, T is the absolute tempera-
ture, and the brackets [ ] indicate concentration.! That is, the
difference in free energy is proportional to the logarithm of
the relative probability of finding the system in one of the
two possible states at equilibrium. To determine the absolute
free energy of a system all possible states must be consid-
ered. Quantum mechanically we can express the Helmholiz
free energy, F, of a system of N particles in a volume V at
a temperature T, in terms of the canonical partition function,
Qf as,

F(N,V,T)= —kgTln Q(N, V, T)

= —kgTln [Z e‘gr'“"-"'i'f*'r] ()

F

where the energy of a quantum mechanical state, j, of the
system is given by E;(N, V).2 The absolute free energy of
a system is a sum over all possible electronic and nuclear
degrees of freedom and for most systems of interest cannot
be calculated. What can be determined is the difference in
free energy between two (closely) related states of a system.
Experimentally, a difference in free energy is determined either
from the relative probability of finding the system in a given
state as in equation (1), or from the reversible work required
to go from an initial state to a final state. Computationally, the
same basic approaches are used. To estimate the free enerpy of
association in equation (1) by simulating a mixture of the two
components and counting how often the complex is formed
is, however, extremely inefficient. In practice, a perturbation
is applied to the system to force the transition from one state
o another. Statistical mechanical procedures are then used to
cormect for the effect of the perturbation or to calculate the
work done on the system by the perturbation.

Free energy perturbation calculations have been extensively
reviewed in many places.*= The aim of this article is, there-
fore, primarily to introduce the basic principles underlying free
energy perturbation calculations and to help the reader place
the various implementations of the methodology into a consis-
tent framework. In addition, the main factors which determine
the reliability of a given calculation are discussed and a brief

review of the current state of the field provided. For a more
complete discussion of the underling theory it is strongly rec-
ommended that the reader refer to Refs. 3, 5,9, 12, 13, and 17,

2 BASIC PRINCIPLES

2.1 Statistical Mechanics of a Classical System

In terms of the energy, E, and the entropy, 8, the Helmholiz
free energy, F, of a system of N particles in a volume V at g
temperature T is given hy®

FIN,V,T)=EN,V,T) - TS(N,V,T) 3

In terms of the canonical partition function, Z(N, V, T}, it
is given by

F(N,V,.T) = —kgTInZ(N, V, T}
= —kgTIn [{ﬁ“mr' f f e””{'-”f*“dp&r] (4}

where h iz Planck’s constant and the classical Hamiltonian,

M
H(p.r)=_p}/@m)+Ulr) (5)

i=1

expresses the total enmergy of the system in terms of the
coordinates r = (ry, r2, ..., ry), and the conjugate momenta,
p ={(p1.pa2, -..,py) of the N (indistinguishable) particles of
the system. my; indicates the mass of particle §, and [/(r)
is the interaction function®? Classically, the free energy
is given by a double integral of the (positive) Boltzmann
factor exp[—H (p,r)/kpT] over all possible values of p and
r which define the volume of phase space accessible to the
system. To estimate the absolute free energy of a system
from a numerical simulation using equation (4) is not possible.
Molecular dynamics (MD) or Monte Carlo (MC) simulations
of large molecular systems necessarily sample only a limited
set of configurations. Any calculation of the free energy via
equation (4) using a set of MD or MC configurations suffers
in a systematic way from the incomplete sampling of phase
space. Specifically, F is overestimated The Boltzmann factor
in equation (4) is necessarily positive so each additional part
of phase space that is included in the integral gives a negative
contribution to the free energy and a positive contribution to
the entropy. Even if a set of configurations representative of
the complete ensemble could be obtained from a simulation,
the integral in equation (4) would still not be accurate.'®

The essential difficulty in estimating the total free energy of
a system using simulation techniques may be more readily secn
if the total free energy is re-expressed as an ensemble average.
Integrating over the momenta p in the partition function and
using [dr = V¥, we find

vl [ e UWRT gp
F(N,V,T)= —kgTlh | —

f c+£-'trﬁfw«arc-u¢rm.rlfaf dr
— kT Inf[Zamkg T/ PY2 (N1
= +k3T1‘[I{E+U'{h'I}N‘vIT

— kg T In{ V¥ [2mmb T /RPN 1) 6]
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where the ensemble average () of a microscopically defined
quantity y(p, r) is defined by

fx(l,;,lr}:--h‘[#-r}fhf"dpdr
{x:'.v.'-',r e RS T T W Tk e el e
]fc—H[p.r},’thpdr

=/fxfp1r}pfp1r}ck?dr (7

olp,r) is the probability of finding the system in the state
characterized by p and r. In an analogous manner the entropy,
&, and the energy, K, can also be expressed in terms of ensem-
ble averages.”® The accurate calculation of the free energy (or
entropy) is not possible due to the occurrence of the ensem-
ble average (exp[+L//kgT]) in equation (6). The probability
p(r) of a molecular configuration being sampled is propor-
tional to the Boltzmann factor exp[—U(r)/kg T]. This will be
small when the function to be averaged, exp[+U(r)/kgT], is
large and vice versa.

2.2 The Coupling Parameter Approach

To calculate the absolute free energy (or entropy) of a com-
plex molecular system is virtually impossible. It is possible,
however, to calculate the difference in free energy between
two (closely) related states of a system using the so-called
coupling parameier approach.” To determine the difference in
free energy between two states A and B of a system using
this approach the Hamiltonian is made a function of a cou-
pling parameter, A, such that when A = 4, the Hamiltonian
of the system corresponds to that of state A, Hip, r;h4) =
Ha(p,r), and when A = Ag, the Hamiltonian of the system
corresponds to that of state B, H{p riig) =Hg(p,r). The
partition function

ZN, V. T:a) = (N f f e Hler BT 4y 4r ()

thus becomes a function of A, as does the free energy.

FiN V. Ti4)= =kgTIn Z(N, V., T:2) {9}

2.2.1 Thermodynamic Iniegration

If the free energy is a function of A we may express the
difference in free energy between the two states A and B (at
constant &, V, and T} as an integral

LA
AFgx % F(hg)— F(k) = [ () da (10)
iy

where F'(3) = dF/d\. For simplicity, the indication of con-
stant N, V, and T in the notation has been dropped. Differen-
tiating equation (%) with respect to A we find

¥ aH (g, Fy L
Fm:ffi%p(p.r;mpdr

(o)
= oy >:¢ {11

where the probability of occurrence of a molecular configura-
tion (and momenta) p(p, r; 4) and the ensemble average {.. ),
defined in equation (7) are dependent on A, Formulae (10) and

{11} form the so-called thermodynamic integration formula 13
The name originates in analogy with thermodynamic meh-
ods to obtain differences in free energy between states gf
different temperature or volume."* The advantage of formuy.
lae (10} and (11) over formulae (4) or (6) is that the relative
free encrgy is computed as an integral over the ensemble aver-
age of the derivative of the Hamiltonian with respect to the
coupling parameter A. This ensemble average does not suffer
from the sampling problems which prohibit the computation
of the absolute free energy via formuolae (4) or (6) because
the most probable configurations also dominate the average.
Nevertheless, a representative ensemble must be sampled for
each A.

2.2.2 Thermodynamic Perturbation

Thermodynamic integration treats the change from the ini-
tial to the final state as continuous. Alternatively, the change
can be considered as one (or more) discrete steps or perturba-
tions. The initial derivation of the so-called thermodynamic
perturbation formula, due to Zwanzig,'® dealt with distingt
states but a stepwise perturbation may also be thought of as
numerical solution to the derivative in equation (10)." Using
equation (4), the free energy difference AFgs, between two
states A and B of a system, can be expressed as the ratio of
the respective partition functions and rearranged to give,

AFp = FQip) — FO) = —kaT In 258)
AP

f f e Hpria)aT gy 4
= —kgTIn

f f e-H(p il gy g

f e=IH (p i )—H (p il T

w e""";"-“"*-ﬂt_ipdr

[f c—Hl:P-r‘:-M].n’kBpodr

which has the form of an ensemble average over state A

— kg TIn (12)

AFpy = —kgT lu,lre-["iis]—ﬂ{kﬁ.:l].fﬁa T}J-.t {13

Equally we could have written AFpy as an ensemble
average over state B,

AF gy = +hpT In{e H-HialteT), (14)

Equations (13} and (14) are formally exact for any perturba-
ton. For large perturbations, however, this formulation suffers
similar convergence problems to equation (6). In fact equa-
tion (13) reduces to equation (6) if the interactions between
the atoms in state B are zero. Using equation (13) the free
energy 1s calculated from the relative probability, a given con-
figuration sampled in an ensemble at A4 being sampled in the
ensemble at 4. To obtain convergence, significant overlap of
the low energy regions of the two ensembles is required. The
effect of the perturbation on the configurational space sampled
must be small. For this reason the thermodynamic perfurba-
tion formula is often expressed more generally as a sum over

1

_,-J

¥
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a series of small steps in A (windows),

rE
AT gy Z _kETm{c—[.rﬁlm.a}—m:-nﬁn?h (15)
A=l

Sometimes equation (15) is also referred to as the exponen-
tial formula. This is in order to distinguish equation (15) which
is formally exact from perturbation approaches in statistical
mechanics which formally depend on the change being small
{see Perturbation Theory). For simplicity equations (11) and
(15) have been derived in the canonical ensemble (N, V, T).
The corresponding equations for the Gibbs free energy in
the isothermal isobaric ensemble (N, P, T) have, however,
the same form.'® Equations (11) and (15) have also been
expressed in terms of the total Hamiltonian. Commonly, the
ensemble averages are expressed only in terms of the potential
energy of the system. In Cartesian space and without con-
straints the terms in the Hamiltonian arising from the potential
energy and the momenta are formally separable and can be
integrated independently. At constant temperature the kinetic
contribution to the free energy is a constant and will cancel
within a thermodynamic cycle (see Section 3.3).1

The coupling parameter approach transforms the basic prob-
lem from the determination of the absolute free energy of two
different systems, which requires knowledge of all possible
states of each system, to the determination of the difference in
free energy between two specific states of one overall system.
At the same time it provides a defined path along which the
difference in free energy may be calculated. This is a great sim-
plification. It does not, however, mean that free energy or the
difference in free energy no longer depends on all phase space.,
The difference in free energy does depend on all phase space
but is dominated by the low (free) energy regions along the
pathway linking the states of interest. The implicit assumption
in all free energy calculations is that the contributions from the
regions of phase space not sampled in the simulations to the
absolute free energy of the two end states effectively cancel.

2.3 Special Cases
2.3.1 Widom Particle Insertion

The method of Widom'? to calculate the excess chemical
potential of a system by random insertion of a test particle,
particle insertion, is in essence a special case of the thermo-
dynamic perturbation formula. The excess chemical potential
{or free energy per particle), p******, is the chemical poten-
tial of a system in excess of that of an ideal (noninteracting)
system at the same density i.e., p=== = gioul _ jyideal 12 T,
excess chemical potential can be determined using the thermo-
dynamic integration or perturbation formula from the change
in free energy as all intermolecular interactions are gradually
reduced to zero, normalized by the number of particles, .
Alternatively, if N is large, this can be approximated by the
“free energy of inserling {or removing) one additional particle.
Treating the addition of a particle as a one-step perturbation
we obtain from equation (13)

P = kg Tlnfe 2Ry o r (16)

where AT is the interaction energy of the test (ghost) particle
with the rest of the system.'? As the position of the test particle
i5 independent of the configuration of the rest of the system it

may be randomly inserted multiple times in each configuration
to improve statistics. Equation (16) will converge so long
as low energy configurations for the test particle, that is a
configuration with an appropriately sized cavity, are sampled.
In practice particle insertion can be highly efficient but fails
if the density is such that the ghost particle (almost) never
samples an appropriate cavity. This should be contrasted to
the inverse of particle insertion, particle deletion. In this case

1 — e T In| l:+ﬁuﬁar.:'.|'i’_lr’.'!' (a7

where AL is now the interaction energy of a given (real) par-
ticle with the rest of the system. Using particle deletion g
never converges to the correct value, This is because configu-
rations in which a cavity does not exist at the position of the
real atom can never be sampled. This highlights a fundamental
property of the perturbation approach. If configurations which
correspond to low energy configurations of the perturbed state
are sampled, the method is highly efficient. If not, the method
does not converge. The method is not symmetric. Conver-
gence of the forward mutation is no guarantee that the reverse
mutation also converges (see Section 3.11).

2.3.2 Potential of Mean Force

If the parameter linking the initial and final states corre
sponds to a spatial coordinate, i.e., an internal coordinate of
the system or a coordinate in Cartesian space, it follows from
equation (11) that the change in free energy as a function of
this coordinate is the ensemble average of the derivative of the
potential energy function with respect to the given coordinate
or simply the average force acting along the coordinate. The
change in free energy as a function of a spatial coordinate,
£, is thus commonly referred to as a potential of mean force
(PMF). A PMF can be straightforwardly evaluated using equa-
tion (11). Often, however, a potential of mean force, w(k), is
expressed in terms of a relative probability function, P(£)

w(f) = —kpTIn P(£) + C (18)

The constant, C, corresponds to the work required (o
constrain the system to the coordinate of interest. Because
adequate sampling is only required in respect of the coordinate
in question, direct determination of the probability function
is frequently possible. For example, in the case of two ions
in solution the free energy as a function of the ion-ion
interatomic distance, r, is simply given by

wir) = —kaT In gir) (19)

where the ion-ion radial distdbution function, g(r)., can be
readily obtained from an MD or MC simulation. In the case
of a highly complex spatial coordinate, however, for example
one associated with a major change in the conformation of a
malecule, or where there are barriers in the free energy profile
in excess of a few kg T, adequate sampling will not be achieved
in an unbiased simulation.

2.3.3 Umbrella Sampling

Using the coupling parameter approach the system is forced
to move along a particular reaction coordinate. This may be
a spatial coordinate or a coordinate in parameter space. The
system is forced because it will not spontaneously sample the
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relevant regions of phase space efficiently. Essentially, the
coupling parameter is treated as a constraint. An altermative,
but closely related, approach is o modify the Hamiltonian of
the system so that the sampling is biased in favor of partic-
ular (important) regions of phase space. This is achieved by
including in the Hamiltonian an additional biasing or umbrella
potential. In effect a restraint as opposed to a constraint is
applied. The inclusion of a biasing potential in the Hamilto-
nian means that the configurations sampled in the simulation
no longer have appropriate Boltzmann weights. Torrie and Val-
lean showed, however, that the {unhiased) ensemble average of
any quantity x, {x}y, could be obtained from a biased ensem-
ble using the relation

{xetUn/aTyy,
Xo = eOwTRT),, (20)
where Uy is the biasing potential energy term and {. ..}y rep-

resents an ensemble average over the biased ensemble.
Umbrella sampling (UUS) techniques can be readily combined
with other free energy perturbation methods. For example, in
potential of mean force calculations, maxima in the free energy
profile will be poorly sampled in the probability distribution.
To overcome this problem an umbrella potential may be used
to increase sampling in the less favored regions. Combining
equations (18) and (20) we obtain

Pwne:rcwvw"’"}

w(#) = ~kgT In [ et

Uw(®) + keTIn(e OB )y + €
@

= ~kpTInPyif) -
= —kgTInPy(E) — Uy(E)+ Fw + C

where Py (£) is the relative probability of sampling £ in
the biased ensemble and Uy (£) is the contribution of the
biasing term to the total potential energy. Fw cormesponds
to the work done on the system (the change in free energy)
by the imposition of the biasing potential. Fy depends on
the ensemble average of a positive exponent and for the
same arguments as apply to equation (6) cannot readily be
determined.

Biasing poientials may take different forms. If chosen to
be the negative of the free energy profile the sampling of
any point along the coordinate will be equally probable. This
15, however, not always desirable. Altemnatively, an umbrella
potential can be used to restrict the sampling to a small region
of phase space lo improve statistics. Different umbrellas may
be used to cover a range of interest and the free energy profiles
combined. Because Fy is dependent on the biasing potential
and cannot readily be determined, the free energy profiles must
be maiched empirically. This may be achieved by exploiting
regions of overlap between adjacent umbrellas. Altematively,

_ the weighted histogram analysis method {(WHAM) can be used
to obtain a self-consistent solution combining all data '~ If
we have Ny biased simulations it follows from equation (21)
that the unbiased probability function Pg;(£) is given by

_ Pwp(d)

—[Uw[.p!E]—me].“-'aT 20

PplE) =

where { indicates a specific biasing potential. If each of the
Fwy are known, the combined unbiased probability density

function is simply

Nur

3 niPw(®)

P[.E} 5 =l

] (23)
Zn-": [Eai i5)=Fur 1 baT

=1

where n; is the number of independent points used 10 construct
the given biased distribution function. If P(£) is known for al]
£ the constants Fy can be estimated from

e Fwa/aT — f P(g)e U ENkeT gr 24
Equations (23) and (24) form the basis of the WHAM pro-
cedure. An initial set of estimates of Fyy, (typically Fuy) =
0) is used to obtain an estimate of P{£) which is used 1o
obtain improved estimates of Fw;). The iteration is continued
to self-consistency. The WHAM procedure has proved very
powerful. It simultaneously combines all data, it is robust, and
is easily extended to multiple coordinates.***! Nevertheless, to
obtain reliable estimates of Fyy, the sampling along £ must
be continuous and sufficient for all possible £.

3 PRACTICAL CONSIDERATIONS

3.1 Enthalpy and Entropy

Why calculate the change in free energy rather than the
change in internal energy and/or the change in entropy? The
answer to this question comes by noting that the derivative
in equation {11) and the difference in energy in equation (15)
are dependent only on those interactions which change as a
function of the coupling parameter. The difference in free
energy is expressed only in terms of perturbed interactions,
not in terms of the system as a whole. The same is not true for
cither the change in internal energy or the change in entropy.
The change in internal energy between two states, A and B, of
a system is given by

AEgy = E(dg) — E(34) = (HOa)h, — (HOW,  (25)
That is, the difference in the average total enmergy of the
two end states. The change in internal energy can be readily
estimated in free energy calculations. However, becanse it
is directly dependent on all interactions in the system and
given by the difference of what are usually two very large
numbers (with large fluctuations), the calculated change in
internal energy is comsidered to be more than an order of
magnitude less statistically reliable than the change in free
encrgy. The same is true for the change in entropy. Using the
thermodynamic integration formalism the change in entropy 15
given by’

ASgs = S(g) — S(ha)
aH (L af (A
:[kﬂr?r'/ [{H{JJ} ( “> <H{1)J>]dl
Er

(26)
which is again dependent on the total system. An allcmatw'u'
expression based on the perturbation approach is available.™
In summary, though it is possible to independently esamate
the change in intemal energy andfor the change in entropy

&
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from a simulation, in practice these gquantities are much less
statistically rehiable than the change in free energy.

3.2 Thermodynamic Perturbation versus
Thermodynamic Integration

The thermodynamic integration formula (10-11) and the
thermodynamic periurbation formula (15) are in principle
equivalent. Both depend. on the evaluation of an ensemble
average. The perturbation formula is, however, often descnbed
as exact, whereas the integration formula is called approxi-
mate because of the numerical integration in equation (10).
This is misleading. The perturbation formula is exact only in
the limit of infinite sampling or perfectly overlapping ensem-
bles for H{A) and H{A + AX). Either method can be used to
determine a given change in free energy to any desired pre-
cision. What does differ is the convergence properties of the
two approaches. Which method is most approprate strongly
depends on the problem.'®25 Perturbation performs well if the
ensembles of the initial and final states closely overlap. Oth-
erwise, small increments in A and long simulation Gmes are
required to avoid large systematic errors. Consider the case
of a particle of mass, m, in a one-dimensional harmonic well.
The potential energy, U, 1s given by

U= jK(x-x)+C (e2)]

where K is the harmonic force constant, xp the equilibrium
position and C simply an offset. In this case the free cnergy,
which may be expressed analytically as

F = —kgTIn[2xh kT (m/ )21+ C (28)

is independent of x3. No work is required to move the equi-
librium position of the oscillator. For mutation A in Figure 1,
AF = (. This mutation is analogous to changing a bond length
in a vacuum. The average (30 /dx) = 0. Thus, using the ther-
modynamic integration formula, AF = 0 for any change in
xp. Using the perturbation formula AF is always positive and
dependent on Axg. AF will only approach zero, for finite
sampling, as Axy approaches zero. In contrast, estimating the
AF associated with a change in the offset € (mutation B in
Figure 1) using the perturbation formula is highly efficient
The ensembles for the initial and final states indicated by the

Potential energy (1)

Position (x)

Figure 1 Two potential mutations of an isolated harmonic oscillator
which illustrate the difference in the convergence properties of the
Perurbation and integration formula. A represents a shift in the
Position, xg, of the oscillator and B represents a shift in the offset,
C, of the potential energy. The parabolic curves comrespond to
the potential energy, Lf{x) (equation 25) and the Gaussian curves
Correspond to the probability distribution of the particle

dotted lines overlap exactly and AF will converge rapidly for
any change in C. Using the thermodynamic integration for-
mula, the denvative al intermediate C values may be required
to evaluate the integral. This example also illustrates a poten-
tial danger in optimizing A or the window size in a per-
turbation calculation based on the calculated change in free
energy.?® The convergence of equation (15) does not depend
on the difference in free energy, but on the degree of overlap
between the ensembles.

In summary, in the limit of infinite sampling the perturba-
tion and integration formulae are equivalent. The convergence
properties, however, differ markedly. If the ensembles closely
overlap perturbation is most efficient. However, because the
convergence of the ensemble average does not depend on the
magnitude of the change in A, the integration formula often
offers the better opportunity to reduce and monitor errors in
practice.?

3.3 Slow Growth versus Numerical Quadrature

The integral in (10) may be evaluated in one of two ways.
(i} The coupling parameter, A, may be made a function of time
and slowly changed throughout a simulation. The integral is
then approximated by a sum over each configuration. This
procedure is commonly referred to as slow growth or single
configuration thermodynamic integration. (ii) Separate ensem-
ble averages may be determined at specific values of A and the
integral evaluated numerically (multi-configurational thermo-
dynamic integration)."'**" Using slow growth one configura-
tion is sampled for each value of A. The ensemble average in
equation (11} is approximated by a set of configurations over a
small range of A. As A 1s continuously changed throughout the
simulation the system is never truly in equilibrinm, but lags
behind the changing Hamiltonian 2 Excess work is done on
the system and the free energy is systematically overestimated.
Averaging the results for the forward and reverse mutation
to correct for this overestimation is unreliable.® A minimum
prerequisite in slow growth calculations is that the difference
between the forward and reverse processes or hysieresis is
small. The hysteresis indicates only the degree of reversibility,
nol that the system is in eguilibrium por that a representa-
tive ensemble has been sampled for each A. If mutated much
faster than it can respond, the system will remain trapped in
a local state. The mutation will appear reversible and show
a small hysteresis. However, if the length of the simulation
is increased the apparent hysteresis will also increase.® Slow
growth performs well in rapidly equilibrating systems where
a single configuration approximates an equilibrium ensemble,
¢.g., a single ion in water or the simultaneous mutation of a
large number of molecules. If the mutated molecule can adopt
multiple configurations, the method converges slowly.

The alternative approach, to perform different simulations
at discrete A values and integrate numerically, allows effects
due to equilibration and sampling to be largely separated, 727~
A simulation is followed until the ensemble average (dH 3L},
converges within the desired precision. To perform the inte-
gration it is assumed that the derivative is a slowly changing
continuous function of A. However, depending on how the
Hamiltonians of the initial and final states are coupled, the
change in free energy as a function of A may be highly
nonlinear or contain singularitics when atoms are created or
destroyed. Even when the same coupling scheme is used for
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all interactions, the derivatives of different terms within the
Hamiltonian may exhibit a different dependence on A. For
this reason, the convergence of the integral must be lested
independently of the convergence of the derivatives to avoid
systematic errors.* Higher-order derivatives of the free energy
with respect to A may improve the estimation of the integral
but require longer simulation times to converge.*!

3.4 Thermodynamic Cycles

Since the free encrgy is a state function, the difference in
free encrgy between two states of a system is independent
of the path used to go between them. The change in free
energy for any cyclic mutation is zero. This has led to the
concept of a thermodynamic cycle in which the change in free
energy along one leg of a circular pathway is expressed in
terms of the change in free energy along each of the other
legs.? This is illustrated in Figure 2. The difference in the free
energy of binding of the two ligands, X and Y, to a receptor
P (AAGyyx) can be determined in one of two ways. Either the
physical process of complexation X + P — X:P (AGq) and
Y + P — Y:P (AG:) can be simulated (horizontal arrows) and
the difference in binding energy determined as AAGyy =
AG, — AG, or the nonphysical mutations, X — Y free in
solution (AG3) and X:P — Y:P in the complex (AGy), can
be performed (vertical arrows) in which case AAGyy =
AGy; — AG;. The results are equivalent as AG + AGy —
Ay — AlGy =0,

Thermodynamic cycles are used for reasons of computa-
tional efficiency.®*!" Simulating the process of complexation
between a ligand and a protein with the associated rearrange-
ment of the protein and a large number of solvent molecules is
generally not practical. In contrast, the nonphysical mutation
of X into Y (computer alchemy) involving the conversion of
a small number of atoms from one type to another is straight-
forward. A thermodynamic cycle also has the advantage that
systematic errors in the calculation may cancel. Systematic

AG,

P +

Figure 2 A thermodynamic cycle that would be used to determine
the difference in binding free energy of the lipands X and Y to the

receptor P

errors may arise from the failure o include quantum mecha-
nical effects, limitations in the force field, the imposition
of boundary conditions, cutoff radi, etc. For cancellation to
occur the simulation conditions must be as similar as possible
throughout the cycle 22

Within a thermodynamic cyele, terms which make no net
contribution to the free energy will cancel and can effectively
be ignored. For example, at constant temperature and in the
absence of mass-metric tensor effects,”* the kinetic energy
contribution to the free energy associated with a change in the
mass of a particle is a constant, the inclusion of which only
introduces noise. Extreme caution is, however, required when
neglecting components. The work required to create a charge
during a simulation will depend on the dielectric constant of
the medium. Long-range clectrostatic contributions can only
be ignored if the dielectric properties of the environments on
both sides of the thermodynamic cycle are equivalent. This is
not the case when one side corresponds to the low dielectric
interior of a protein and the other to a high dielectric medium
such as water. The influence of internal terms must also
be considered. Frequently, internal contributions to the free
energy are neglected. However, if the conformational freedom
in the imitial and final states is different, intemal terms will
make a net contribution to the overall free energy and cannot
be ignored. 3%

3.5 Equilibration and Sampling

A primary source of error in free energy calculations is a
failure to sample a representative (equilibrium) ensemble.>~¥
To sample the complete ensemble composed of all possible
configurations is not possible. Free energy calculations aim
not to determine the complete ensemble but to sample a
representative ensemble of a specific (metastable) state, e.g., a
ligand bound to a folded protein. As only a single or at most
a small number of molecules may be included in a simulation,
the ensemble average in equations (11} or (15) is replaced by
a time average (MD) or an average over a set of sequentially
generated configurations (MC). This means that unless the
sampling 1ime, Tsampling, 15 much longer than the relaxation time
of the system, the calculated free energy will be correlated in
time and dependent on the starting configuration. For a single
molecule equilibrium can also only be defined in terms of
a time average. The starting conformation must not only be
part of an equilibrium ensemble but also represent 2 common
configuration. The equilibration and sampling time required
at each A value will depend on the properties of the specific
system. It cannot be expressed in terms of MD simulation
time or MC steps. Sampling can be considered sufficient only
if the calculated free energy or the partial derivatives of the
potential energy function with respect to A no longer change
with time. However, such convergence in itself is no guarantee
that the system is in equilibrium (i.e., the free energy is at a
minimum) or that a representative ensemble has been sampled.
In the case of the perturbation formula, convergence of the free
energy is also no guarantee that the configurations sampled in
the reference state correspond to low energy configurations in
the perturbed state.

3.6 Choice of Pathway

The A dependence of the Hamiltonian defines the pathway
from the initial to the final state. The choice of path does nol

4
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affect the change in free energy but strongly affects compu-
tational efficiency. A direct path is not necessarily the most
efficient.”® The most efficient path is one along which the
relaxation time of the system with respect to the change in the
Hamiltonian and the time required to sample a representative
ensemble are both minimized. As only terms in the Hamilto-
nian that change as a function of A contribute to the change
in free enecrgy, the number of such changes should be min-
imized. The unnecessary introduction of additional degrees
of freedom should be avoided. In many cases involving the
creation or deletion of a substituent atom only the van der
Waals and Coulomb interactions need be mutated. If possible
bond, angle and dihedral angle terms should be held constant.
This avoids the additional work required to modify the asso-
ciated force constants and the additional sampling required
along these degrees of freedom. If the covalent terms are held
constant, the end state will differ from the case when the force
constants are reduced to zero. The calculated free energy will
also differ. This difference will, however, cancel within the
context of a thermodynamic cycle. 317

3.7 Creation and Deletion of Atoms

The Lennard-Tones and Coulomb potential energy terms
standardly used in atomic force fields contain a singularity in
the energy and the force (317 /dr) when the interaction distance
between two atoms § and j, ryj, is zero. For fully interacting
atoms this singularity is never sampled due to the repulsive
term in the Lennard-Jones interaction and it does not contribute
1o an ensemble average of the potential energy. The singularity
in the potential energy function when r;; = 0 means, however,
that there is a singularity in the derivative of the potential
energy function with respect to A, when ri; = 0 for atoms
that are created or destroyed. If a linear coupling between
the Hamiltonian of the initial and the final states is used, the
singularity in the associated derivative may be sampled in the
initial or the final state when the effective van der Waals radius
of the mutated atom is zero. In this case the ensemble averages
i equations (11) and (15) cannot be determined. In practice
the sampling of the singularity is often avoided by creating or
deleting an atom within the effective van der Waals radius of
an atom to which it is bound *®

Alternatively, the dependence of the Hamiltonian on A
may be chosen so that the derivative of the potential energy
function with respect to A at the end states is zero or finite.
For example, when using a 6-12 Lennard-Jones potential the
effective diameter of the particle, o, may be scaled at the same
time as the well depth, £ This is equivalent to scaling the
total interaction by a higher-order power of 4.%#! Using such
an approach to remove the singularity in the derivative with
respect to A is applicable where single atoms are created or
removed and the ensemble is generated wsing MC. If MD is
used to geperate the ensemble, linear or nonlinear coupling
of the Hamiltonian will lead to numerical instabilities in the
simulation as cxposed atoms arc created or destroyed. This
is because the singularity in the force is unaffected. If a
finite step size is used to integrate the equations of motion,
then when the effective radius of the mutated atom is small
compared to the length of flight of an atom per timestep,
high energy regions of the potential, including r = 0, may
be sampled.*" To avoid such numerical problems a form of
Potential energy function that does not contain a singularicy

at r =0 may be used *'? Such numerical instabilitics do
not arise in MC simulations because the force is not used 1o
propagate the system. Nevertheless, sampling problems may
still arise if clusters of bonded atoms are created or destroyed
simultaneously. Finally, sometimes the calculation is simply
truncated at a given value of A and the free energy extrapalated
to the end states?* This is the least satisfactory of the
possible approaches as the magnitude of the error that is made
in a particular case is unknown.

3.8 Metric Tensor Corrections

If constraints are used, for example to maintain fixed
bond lengths during a simulation, the Hamiltonian of the
system is different from the unconstrained case. This in mrn
leads to a (slightly) different ensemble being generated. To
correct for the effects of such constraints a so called mass-
metric tensor correction can be applied.’® In practice as metric
tensor corrections are often small andfor cancel within a
thermodynamic cycle, they are frequently ignored. However,
if the constraint significantly alters the volume of phase space
accessible to the system, metric tensor effects can make a
major contribution to the free energy.

3.9 Constraint Contributions

Metric tensor corrections arise directly from the application
of constraints and are a comection to the total free energy
of the system. Sometimes, however, reference is made to
an additional contribution or comection to the free energy
associated with a change in a constrained bond length. This
additional ‘correction’ is not due to the imposition of the
constraints as such but due to the manner in which the
thermodynamic integration or perturbation formula has been
implemented. Using the coupling parameter approach all parts
of the Hamiltonian that change as a function of A contribute
to the change in free cnergy. A constraint on the system
is formally part of the Hamiltonian. Thus, if a bond length
parameter ig changed there will be a coniribution from the
bond to the change in free energy. This is true whether or not
the bond is treated as a constraint or as a harmonic oscillator
and irrespective of the method used to gencrate the ensemble.
In the case of a constraint this contribution to the free energy
will include the difference in the metric tensor comection. If
an analytical derivative of the Hamiltonian (8H /dA) is used
in conjunction with the thermodynamic integration formula,
the derivative of the potential along the direction of the
bond must be determined. This is simply the force from the
environment acting along the direction of the bond which is
opposed by the constraint (see Section 2.3.2). This force can
be readily calculated using the constraint resetting procedure
SHAKE and has been referred to by some as a SHAKE
contribution.'®** It has, however, nothing intrinsically to do
with SHAKE. The same contribution is present irmespective
of the method used to reset the constraints. If a numerical
derivative is calculated or if the perturbation formula is used,
H{A) and H () + AX) are evaluated for a given ensemble. As
the geometric parameters (e.g., bond lengths) form part of the
Hamiltonian when constraints are used, the bond lengths must
correspond to H (L) when evaluating H(i) and H(X + AL)
when evaluating H (* + AX).2 If only the interaction function
parameters and not the geometric constraints are changed when

-



1078 FREE ENERGY PERTURBATION CALCULATIONS

evaluating (L + AL) the contribution to the free energy
associated with the change in bond length is neglected and
an additional correction is required. ¥

310 Free Energy Components

A physically meaningful separation of the iTee energy into
specific components is, in general, not possible. The rotal
free energy of the system can only be expressed in terms of
a sum of unique components in so far as the total system
can be separated into a series of independent subsystems
(e.g., two groups widely separated in space). This is a direct
consequence of the statistical mechanical definitions of free
energy and entropy.® In a number of studies, however,
analyses of a breakdown of free energy components based on
the thermodynamic infegration formula have been presented,
It may be easily shown that if the Hamiltonian, H, can be
expressed as a linear combination of terms, we may rewrite
the integration formula (10-11) in the form

g A > L} aH
ok SR f o d N dh
J.—.l_d< a f, a=hy 4 OA >1

v raH,
s
.£=1d < aA >

= AFpa (1) + AFga(2) + - - + AFgain) (29}

AFpy =

where H; to H,, can refer to any separation of the Hamiltonian
either in terms of force field parameters, residue-residue
interactions or solvent-protein interactions.*® The problem
with such a breakdown is that the type of separation possible
and the magnimdes of the calculated free energy components
AFga(l) to AFge(n) depend on the A-dependence of the
- Hamiltonian which defines the pathway taken to go from the
initial to the final state. The choice of the A-dependence of the
Hamiltonian or pathway is not unique, hence the calculated
free energy components are not unique. 74748

MNevertheless, some authors argue that there are ‘natu-
ral’ (nonphysical) pathways along which components can be
defined. ¥=%* Sharp and co-workers have shown that if all
interactions are uniformly scaled to zero, the (entropic) con-
tnbutions to the free energy arsing from correlations between
various force field terms partition evenly. ™ This does not
mean that there are no correlations nor that they can be deter-
mined, only that the contributions partition in a defined manner
as is true for any pathway. Another pathway frequently used
for component analysis is to remove the electrostatic interac-
tions of an atom with the rest of the system before removing
the van der Waals interactions.™ The electrostatic contribution
may then be compared to continuum electrostatic models. The
physical relevance of this is. however, uncertain as the van der
Waals and electrostatic interactions are highly correlated ® It
is not possible, for example, to consider the pure electrostatic
contribution to the free energy of an ion in water. If the van der
Waals interactions are removed before the electrostatic interac-
tions, a singularity in the polential energy function is exposed
and the contributions of the van der Waals and the electrostatic
interactions to the free energy are undefined,

Perturbation always involves a linear combination of the
initial and final states, therefore can the perturbation formula
be used to define unique free energy components? Expanding

equation {13} we obtain
AF gy = +{H{hg) — HiA b, — (26gT)" i[':[ff{-:'-ﬁ}_H':":'-alﬂz:':_,‘
— {H(hg) — H(ha)} + Ol(ksT) 7] (30)

which can be further expanded in terms of specific force fielg
terms and correlations between these terms.**% Applying the
equivalent expansion to equation (14) for the identical change
in free energy we oblain

AFpa = —(H(a) — H(ialhas + @k T) ' [{IH (W) — HAs),,
~ {H(ha) — H{a))i, 1 — Ol(ks )] (31)

Although equations (28) and (29) refer to the same change
in free energy, depend on a linear combination of the initjal
and final states, and are based on the same series expansion,
the individoal terms are not equivalent,

{H(ha) — Hdglhag & —{H(hg) — H (A, (32)

The averages are over different ensembles. Component
analysis based on the perturbation formula is not unique
but dependent on the reference ensemble. It is possible 1o
manipulate the reference ensemble and hence manipulate the
components. 5

To summarize, although the total free energy of a system is
a state function, free energy components are not. Free encrgy
compenents are essentially a reflection of the path (or the
teference ensemble) that has been imposed and any analysis
or physical interpretation of free energy components based on
such calculations is subjective.

3.11 Error Estimation

To estimate the statistical ermor in free energy calculations
is nontrivial. The reason is twofold, First, the sampling of
phase space in MD or MC simulations is not random and
ergodic but uneven and highly correlated in time, especially
in macromolecular systems. Second, the magnitude of the
fluctuations and correlation times for different terms which
contribute to the change in free energy can vary dramatically.
Using a given sampling period, the free energy may well
appear converged simply because the simulation contains no
information in regard to processes that occur on a longer time
scale. To estimate statistical error in free energy calculations it
is generally assumed that the sampling time is longer than the
relevent correlation time and/or that the Auctuations in the free
energy are normally distributed about the mean. Frequently
neither is the case. Estimates of the statistical error in a free
energy calculation thus tend to be dominated by terms with
large fluctuations and short correlation times leading to the
systematic underestimation of the true uncertainty, When a
calculation is repeated using different starting structures, the
difference in the change in free cnergy may be much greater
than the statistical error in any given simulation. The degree
of closure in a thermodynamic cycle is a simple measure of
the minimum statistical (andfor systematic) error. If several
molecules in different environments are to be compared the
closure of thermodynamic eyles in each environment and
between as many molecules as possible should be checked.

In perturbation calculations the change in free energy for
the forward (L + AA) and reverse (A — AL} mutations can be
determined and compared for each point along the pathway.

8
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This is one measure of the uncertainty. However, as discussed
in regard to particle insertion and deletion {see Section 2.3.1)
the convergence properties of the forward and reverse muta-
tions are not necessarily equivalent. In slow growth calcula-
fions the free cnergy as a function of A is clearly correlated in
ime. In perturbation and multiconfigurational thermodynamic
integrafion calculations the simulations at specific values of &
are formally independent. However, if intermediate states are
gencrated sequentially or from a single starting configuration
they will be correlated along the pathway and not represent
independent samples. Different methods to estimate the statis-
tical error in free energy calculations are discussed in Refs. 29,
34, 53, and 54.

"

3.12 The Force Field

Whether the calculated and experimental free energy
differences agree depends crntically on the model used to
describe the interatomic interactions in the system, that is,
the force field. The empirical force fields commonly used in
macromolecular simulations, e.g., CHARMM,> AMBER,
and GROMOS,” have been primarily derived and tested using
structural criteria (see AMBER: A Program for Simulation of
Biological and Organic Molecules; CHARMM: The Energy
Function and Its Parameterization; and GROMOS Force
Field). Few force fields are directly parameterized to reproduce
relative free energies. This situation is changing. The OPLS
force field (see OPLS Force Fields), fitted to reproduce the
heat of vaporization and density at a given temperature and
pressure for simple liquids, is perhaps the best example of a
force field parameterized against thermodynamic data.®® The
most recent version of the GROMOS force ficld (GROMOS96)
is in part also parameterized to reproduce thermodynamic
properties including free energies of hydration™ No force
field is, however, correct in an absolute sense. All force
fields, even ab initic quantum mechanical force fields, are
models and a model can only predict those properties which it
encompasses. If electronic polarization effects dominate the
change in free energy, electronic polarization effects must
explicitly (or implicitly) be part of the model. In free enersy
calculations the critical factor is the difference between the
force fields of the initial and final states. Different parts of
the force ficld must also be compatible. A model of liguid
water parameterized to reproduce the heat of -vaporization at
a given density and pressure will yield the comect excess
free energy of water as may a similarly parameterized model
of methanol. This does not mean that, when combined, the
maodels will necessarily reproduce the hydration free energy
of methanol. The treatment of long-range interactions by
the application of a cutoff, Ewald summation or a reaction
field is also part of the overall force field. The sensitivity
of different properties to specific force field parameters will
 Vary. The excess free energy of the simple point charge (SPC)
Wiler model is comparatively insensitive to the treatment
of long range interactions.™ In contrast the free emergy of
hydration of an ion in SPC water is very sensitive to the
treatment of long-range interactions.® To summarize, force
field parameterization is a contentious issue for which there
1s no unique solution; however, if a force field is to be used
o predict free energies, thermodynamic properties should be
considered in the parameterization and testing.

4 APPLICATIONS

The concept of free energy is fundamental to our under-
standing of chemistry. Thus, when considering possible appli-
cations of free energy calculations the primary question is not
which properties of a system can be analyzed but for which
systems can the requirements of equilibrium and adequate sam-
pling be realized. The most comprehensive listing of studies
involving free energy calculations to date is the review of
Kollman. ! The following simply illustrates some classes of
potential applications and provides a starting point for further
reference.

4.1 Solvation

The most straightforward application of free energy calcu-
lations is the determination of solvation free energies. This
includes the estimation of the excess free energy of simple
liquids,® the estimation of hydration free energies 5 apd
the estimation of partition coefficients.®! The systems involved
in such calculations are characterized by two features. First,
the relaxation time of the environment to the perturbation,
for a simple solvent such as water, methanol or chloroform,
is short compared to the accessible simulation time. Second,
mutations pnmarly involve changes to the solute-solvent
nonbonded interactions. Adequate sampling can readily be
achieved and the difference in free energy estimated to high
precision (<1 kJ mol™!). The results depend primarily on how
the interactions in the system are modeled. Soch calculations
are increasingly used to verify the uility (or otherwise) of spe-
cific force fields,*®~%2 to test methodology,?%2 and to address
questions as diverse as the distribution of water across a bio-
logical membrane® and the nature of the hydrophobic effect.®

4.2 Molecular Association

The greatest potential application of free energy calcula-
tions in chemistry is the estimation of the free energy of
association between two compounds. For example, free energy
calculations can be used to help understand the difference in
binding affinity of different compounds in structure based drug
design'™'*%* (see Drug Design). To calculate the difference
in binding affinity between two compounds a thermodynamic
cycle of the type shown in Figure 2 is used. The calculation of
the difference in solvation free energy for the two compounds
is straightforward. The sampling of the compound within the
binding site is more problematic. If the receptor is a protein
the environment of the ligand may relax slowly compared to
the available simulation time. Normally, sampling all possible
orientations of the ligand within the binding site is not pos-
sible. Demonstrating that the results are converged is thus a
major challenge. Even in simple systems the accuracy of the
resulis is limited as much by insufficient sampling as by the
force field. Examples of the use of free energy calculations to
study molecular association include ion-chelation,® inclusion
complexes,*® protein-ligand interactions,™ and protein-DNA
interactions®” to list but a few.

43 Conformational Equilibria

The estimation of the difference in free energy associated
with a change in conformation, or where the mutation results
in a change in conformational equilibria, represents a class of
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problems dominated by sampling considerations.®* =™ Even
for a simple model system, such as liquid butane, the fre-
quency of barrier crossings is such that long simulation times
are required to adequatcly sample the frans, gauche+, and
gauche— states™® If a given mutation alters the probability
of the rrans and gauche states being sampled, the complete
equilibrfium distribution must be sampled at every value of A,
This places severe constraints on the type of system that can
be treated rigorously without resorting to special technigues to
enhance sampling 7"~

4.4 Protein Stability

The estimation of the change in protein stability associ-
ated with the substitution of a given amino acid represents a
class of problems where the use of free energy calculations
is questionable.®® To estimate a change in protein stability
the difference in free energy of a given mutation performed
in the folded state and the unfolded state must be deter-
mined. Many studies in the literature have addressed this
question, and results in pood agreement with experiment have
been published **™ Nevertheless, serious questions remain in
regard to the validity of the model used for the unfolded state
and whether adequate sampling can be achieved. To fulfil
the requirements of the theory a representative ensemble of
unfolded configurations must be sampled. However, no exper-
imental structure for the unfolded state of a protein exists.
This docs not mean that such applications should never be
attempted. In some cases the simplifying assumptions used
may well be appropriate. However, when judging the validity
of the results (or interpretation) from any free energy calcula-
tion it must be considered to what extent the assumptions on
which the methodology is based are met. If the basic assump-
tions of the methodology are not met any apparent agreement
with experiment is simply fortuitous.

5 RECENT TRENDS
5.1 Free Energy Extrapolation

In principle, the difference in free energy between a refer-
ence state and any other state of a system can be determined
if the equilibrium flucmations of the reference state are com-
pletely known. Essentially, the free energy of an alternative
state can be extrapolated from the behavior of the system in
the reference state. For many applications, most notably in
structure based drug design, such an approach has many advan-
tages. One 15 that a single simulation {(ensemble) can be used
to estimate free energy differences between multiple alternate
states.

Methods to estimate the change in free energy associated
with multiple perturbed states from a single, or a small num-
ber of simulations are based on either: (1) a series expansion of
the free energy around a given reference state, (ii) an assump-
tion with respect to the functional form of the free energy
or, (iii} the application of the thermodynamic perturbation for-
mula. The first approach is conceptually the most simple. The
free energy is expanded as a function A into a Taylor series
around a given reference state, A = 0, as follows,

AF(L) = F(A) — F(0)

1 1
= F'liaoh + 5. F'liwod® + 2 F"hod® + -+ (33)

—

where the values of the higher-order denvatives F", F™ | 4
& = 0 are computed as averages over the ensemble of the refer.
ence state. Smith and van Gunsteren, using a 1 ns simulation,
showed that the change in free energy associated with sub.
stantial charge rearrangements (+0.25 ¢) of 2 model diatomic
dipolar molecule in water could be predicted truncating the
series beyond the second- or third-order terms. ! Higher-arder
derivatives, however, converged slowly. A potential advan-
tage of this approach is that the convergence of the series will
depend on the A dependence of the potential energy function,

An alternative to a series expansion is to assume a specific
functional dependence for the free energy. Levy et al., using
linear response theory, which essentially assumes that the
fluctuations of the system have a Gaussian distribution, derived
an expression for the change in electrostatic free energy which
was equivalent to including only the first- and the second-order
terms in the Taylor series*™ The method of Jayaram and
Beveridge (renormalization on the unit interval) also assumes
a particular (normal) distribution for the fluctuation in the total
energy of the system.”™ Estimating free energy differences
based on linear response theory using simulations at both the
initial and final states have also been proposed by a number
of workers.™

If the series expansion in equation (33) converges for a lin-
ear combination of the initial and final states then the approach
is formally equivalent to the application of the perturbation for-
mula (13). To obtain a meaningful estimate of a free energy
difference using the perturbation formula, low energy regions
of the ensemble generated for the reference state must overlap
with low energy regions of the alternative state. Such over-
lap does not occur when atoms are created or deleted and the
mutation must normally be broken into a number of interme-
diate steps. The essential difficulty is sampling. Liu et al. have
demonstrated, however, that a well chosen localized biasing
potential (ie., placing sofi-core inleraction siles at positions
where atoms were to be created or deleted), permined the
accurate prediction of changes in the free energy of hydration
for a series of substimted phenols associated with the cre-
ation and removal of multiple atoms and substantial charge
rearrangement from a single 300 ps simulation.™

5.2 Coordinate Transformations to Enhance Sampling

High energy barriers in the potential energy surface can
prevent rapid equilibration and the sampling of a representa-
tive ensemble. For example, a compound can become steri-
cally trapped because two atoms are unable to pass through
each other. In some cases coordinate transformations can be
used to circumvent such barriers. One general approach is 10
extend the dimensionality of the system during the free energy
calculation.™ All atoms in the end states are constrained o
be in three-dimensional (3D) Cartesian space but some or all
atoms in intermediate states may move in four dimensions.
This is nothing other than choosing a pathway that facilitates
the relaxation of the system. The only requircment is that the
work done on the system when changing the dimensionality of
the system is included in the calculation. The use of a soft-core
potential or the separated shifted scaling method when atoms
are created or deleted is analogous to the inclusion of a fourth
dimension. Increasing the dimensionality of the system may
facilitate the sampling of aliemate configurations but the vol-
ume of phase space accessible to the system will also increase.
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Both factors must be considered when applying any methed to
enhance sampling in free encrgy calculations. In practice it is
pecessary to constrain the system very close to 3D Cartesian
Spacc.

Oither forms of coordinate transformations can also be used
to enhance sampling. Severance et al. demonstrated that an
appropriate coordinate transformation applied to every config-
uration of a given ensemble can be used to dramatically extend
the range for which the perturbation formula converges.™
Note, however, that the same coordinate transformation must
be applied to every configuration in the ensemble. Although
this was not done in the original work, Severance et al. demon-

strated an important general principle.”™

53 Dynamics in 4 Space

The introduction of the coupling parameter, A, into the
Hamiltonian effectively increases the degrees of freedom avail-
able to the system. Normally, A is treated as a constraint. The
system is forced to move along a defined pathway in A space
from one physically relevant state to another. An alternative
is to treat the coupling parameter as a dynamic variable and
perform MC or MD in A, or parameter, space. This space will
be multidimensional if separate coupling parameters, i;, are
assigned to individual parts of the Hamiltonian. The set of
coupling parameters, A;, may be treated as any other set of
degrees of freedom in the system.

To perform MC in A; space a number of MC moves may be
attempted in Cartesian space during which the A; are held con-
stant. Then a number of moves in &; space may be attempted
during which the Cartesian coordinates are held constant. The
same acceptance criteria can be used for both types of move ®
To perform MD in A space the system must be described
in terms of an extended Lagrangian. The J; parameters are
assigned fictiious masses and the force on each A; is given
by the partial derivative of the potential energy function with
fespect to a given A;. The normal equations of motion may
then be used to generate an appropriate irajectory. Perform-
ing dynamics in A space the system will spontaneously move
toward regions of lower free energy. The method can, there-
fore, be used to search a range of parameter space in the same
manner as a normal MD or MC simulation is used to search
configurational space. Optimization methods such as simulated
annealing may also be applied ™ The free energy difference
between two states, however, can no longer be determined by
directly integrating along the path. Instead it must be deter-
mined from the probability distribution in A space analogous
o a PMF (see Section 2.3.2). One aftraction of performing
dynarnics in A space is that neither the exact pathway nor the
end states need be defined. For example, all force field param-
cters describing the binding of a ligand to a receptor could
in principle be treated as variables and optimized during a
simulation to determine the tightest binding ligand. However,
the introduction of a nonphysical degree of freedom into a
system means the minimum free energy need not necessarily
correspond to a physical state unless additional constraints are
applied. Adding nonphysical degrees of freedom also increases
the volume of phase space accessible to the system, compound-
ng sampling problems. Another application of dynamics in A
Space is to obtain a pathway between two states along which
the free energy is always a minimum® In some cases this
may be an advantage but efficient sampling of configurational

space and the lowest free energy state are not necessarily
synonymous.®

6 CONCLUSIONS

Free energy perturbation calculations are very powerful,
They provide cne of the few practical means by which the dif-
ference in free energy between two states of a system can be
caleulated directly using MC and MD simulation techniques.
The basic methodology is well established and potentially
highly accurate. Free energy is, however, a statistical mecha-
nical quantity. This means that the free energy is critically
dependent on the sampling of phase space. A reliable estimate
ol the [ree energy difference between two states of a system
will only be obtained if the underlying assumptions on which
the methods described in this eniry are met. There are two
basic requirements. First, a representative equilibrium must be
sampled. Second, the force field or model used to describe the
system must be appropriate. It is against these two criteria that
all free energy calculations should be judged.
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MCTI = multi-configuration thermodynamic integration;
PMF = potential of mean force; SCTI = single-configuration
thermodynamic integration.

1 INTRODUCTION

Computer simulation has become a key scientific tool in
the study of chemical and biochemical systems. Molecular
modeling techniques are routinely being used in the study of a
wide variety of chemical systems, such as proteins and DNA,
and their interaction with potential pharmaceutical agents. The
use of molecular simulations has become possible as a result
of advanees in theoretical and computational chemistry and
the rapid development of cost-effective computing resources.
Among the most popular tools in computer simulation studies
of complex chemical systems are the thermodynamic cycle
free energy methodaologies.

The foundation of the methodological development of these
free energy techniques lies in statistical mechanics, provid-
ing the connection between the detailed, microscopic descrip-
tion used in the computer simulation of the molecular sys-
tem, and measurable macroscopic properties. The fundamental

h

statistical mechanical quantity is the partition function, from
which the thermodynamic quantities of interest are derived,
These thermodynamic properties can be expressed in terms of
statistical mechanical ensemble averages which are approxi-
mated by calculated ensemble or time averages from molecular
simulations. Much of the recent development is in the design of
computational techniques to overcome the difficulty of obtain-
ing converged values for these averages, rather than in the
derivation of the methodology itself. This difficulty lies in
the inability of practical simulations to traverse the important
regions of phase space within a reasonable amount of sim-
ulation time, and is commonly referred to as the sampling
problem.

This article describes thermodynamic perturbation and ther-
modynamic integration. These methods form the basis of the
most popular computational techniques for free energy differ-
ence evaluation with molecular simulations.

2 STATISTICAL MECHANICAL BACKGROUND

Consider a system of N particles with generalized coordi-
nates " and conjugate momenta p". The classical canonical
partition function for the system at temperature T is given

byl?
Q=ﬁffmp(—%)dp"dq” )

where h is Planck’s constant, kg is Boltzmann's constant,
and H(q",p") is the classical Hamiltonian describing the
interactions in the system in terms of coordinates and momenta
of all particles. The factor N! is only applicable if the N
particles are indistinguishable.

Each point in phase space is characterized by a umigque
set of coordinates and momenta. The normalized phase space
probability =(q"¥, p¥) is proportional to the Boltzmann factor
and given by
. p") = exp(—F(q", p*)/kaT]

[ [ ewi-n @9 )kaTida" ap”
For any property W the expectation value can be written as
00", p*)) = [ j W, p . P de” )

The Hamiltonian of a conservative system can be separated
into a kinetic energy contribution depending solely on the
momenta and a potential energy contribution that depends only
on the coordinates:

Hig¥, p¥) = T0p") + vig¥) (4)

Then the phase space probability can be integrated over the
momenta to obtain the normalized coordinate space probabil-

iy,

(2)

expl— Vg™ )/ks T
f:xp[—qu"’}lha?"idll"

(q") =/xm”,p"}dp" - 5)

which allows the expectation wvalue of any property that
depends on the coordinates only to be written as

E¥q")) = f (g )niq") dq" 6)



