

Relevance of function prediction In a post-genomic, posttranscriptomic, post-proteomic and post-stuctural-genomic era do we not know all function??

Function by homology

- strategy: Blast, copy and pasteadd "-like protein" if you feel like
- Problems
 - annotation errors in databases
 - " inheritance of errors
 - " "chinese whisper"
 - a single mutation may make a protein non-functional

Function by homology

- strategy: motif search (e.g. Pfam)
 - much better then Blast
 - still relies on detectable sequence similarity
- " look out for significance of the match!

Function from structure

- function is determined by structure
- BUT structure does not determine function
 - paralogs
 - " function may have changed after gene duplication
 - " analogs
- " Some folds are promiscuous and hold many different functions
- " Structure and sequence determines function!

hemoglobin "Vitreoscilla stercoraria (bacteria) versus Petromyzon marinus (eukaryote) " same fold " very similar structure " 8% sequence ID " heme group and HIS residues involved in binding are conserved

Combining sequence and structure

- compare structures
 - how functional promiscuous is the structure?
- analyse sequence similarity of related structures to your query sequence
 - are functional important residues from proteins with known function conserved in your protein?
- extend the sequence analysis to complete family
 - are putative functional residues also conserved evolutionary?

Another look at structure

- Biochemical function requires certain physical molecular properties. E.g.
 - " pockets (increased surface) for binding
 - hydrophobic interactions
 - " non-specific
 - charge interactions
 - " specific
 - e.g. positive surface charge of DNA/RNA binding proteins

Other data supporting function

- genomic context
- bacterial protein
 - " functional units (operons) are conserved
 - analyse functional commonalities of colocating genes
- " eukaryotic proteins
 - functionally related proteins get often physically joint during evolution
 - " look for fusion proteins of your target with other proteins

Other data supporting function

- Protein-protein interactions
 - physical interaction suggest functional interaction
 - interaction networks of proteins (interactomes) are available for several model organisms
 - Data quality varies significantly
 - " yeast two hybrid
 - bait tag purification
 - " Interaction reports from literature

Summary

- Function prediction most accurate when evidence is cumulated
- Use holistic, hypothesis-driven approach and try to support (disproof) putative function (alternative functions)