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ABSTRACT 

We apply a recently developed method, multicanonical algorithm, to the problem of 
tertiary structure prediction of peptides and proteins. As a simple example to test the 
effectiveness of the algorithm, Met-enkephalin is studied and the ergodicity problem, or 
multiple-minima problem, is shown to be overcome by this algorithm. The lowest-energy 
conformation obtained agrees with that determined by other efficient methods such as Monte 
Carlo simulated annealing. The superiority of the present method to simulated annealing 
lies in the fact that the relationship to the canonical ensemble remains exactly controlled. 
Once the multicanonical parameters are determined, only one simulation run is necessary to 
obtain the lowest-energy conformation and furthermore the results of this one run can be 
used to calculate various thermodynamic quantities at any temperature. The latter point is 
demonstrated by the calculation of the average potential energy and specific heat as functions 
of temperature. 
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INTRODUCTION 

The prediction of tertiary structures of proteins from their primary sequences remains 
one of the long-standing unsolved problems (for recent reviews, see, for example, Refs. 14). 
The problem amounts to finding the energy global minimum out of a huge number of local 
minima separated by high tunneling barriers. Within the presently available computer re- 
sources, the traditional methods such as molecular dynamics and Monte Carlo simulations 
at experimentally relevant temperatures tend to get trapped in local minima, rendering the 
simulations strongly dependent on the initial conditions. One of promising methods which 
alleviate this multiple-minima problem is simulated annealing.s The method is based on 
the “crystal forming” process; during simulation temperature is lowered very slowly from a 
sufficiently high temperature to a “freezing” temperature. Simulated annealing was used to 
refine protein structures from NMR and X-ray data’-’ and to locate the global minimum- 
energy conformations of polypeptides and proteins. ‘-I1 The effectiveness of the method was 
further tested in many applications. l*-** However, the algorithm is not completely free of 
faults. There is no established protocol for annealing and a certain number (which is not 
known a priori of runs are necessary to evaluate the performance. Moreover, the relationship 
of the obtained conformations to the equilibrium canonical ensemble at a fixed temperature 
remains unclear. 

A new powerful method which is referred to as multicanonical algorithm was recently 
proposed by Berg et al. 23*24 The idea of this method is based on performing Monte Carlo sim- 
ulations in a .muZticanonicaZ ensemble?3*25 instead of the usual (canonical) Gibbs-ensemble. 
The canonical distribution for any temperature can then be obtained from one multicanonical 
simulation run by the re-weighting techniques. 26 In the multicanonical ensemble all energies 
enter with equal probability so that a simulation may overcome the barriers between local 
minima (by connecting back to the high temperature states). Since the multicanonical en- 
semble puts the energy on a one-dimensional random walk, the global-minimum state can 
be explored with ease. The method was originally developed to overcome the supercritical 
slowing down of first-order phase transitions, 24*27-2Q but it has also been tested for systems 
with conflicting constraints such as spin glasses ao-32 and the three-dimensional random 
Ising model. 33 The latter systems suffer from a similar multiple-minima problem and it was 
claimed that the multicanonical algorithm outperforms simulated annealing in these cases.3o 

In the present work we apply the multicanonical algorithm to the problem of tertiary 
structure prediction of peptides and proteins. Since the purpose of this work is primar- 
ily to test the effectiveness of the algorithm, we have studied one of the simplest peptide, 
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Met-enkephalin. This peptide is convenient for our purpose, since the lowest-energy con- 
formation for the potential energy function ECEPP/2 3rl-36 is known3’gss and analyses with 
Monte Carlo simulated annealing with ECEPP/2 also exist.18v21 We shall show that by run- 
ning the multicanonical simulation only once we can not only reproduce the lowest-energy 
conformation but also obtain the canonical distribution at various temperatures. 

METHODS 
Potential Energy Function 

Met-enkephalin has the aminoacid sequence Tyr-Gly-Gly-Phe-Met. For our simulations 
the backbone was terminated by a neutral NH*- group at the N-terminus and a neu- 
tral -COOH group at the C-terminus as in the previous works of Met-enkephalin.‘“*‘8~‘* 
The potential energy function that we used is given by the sum of the electrostatic term, 
12-6 Lennard-Jones term, and hydrogen-bond term for all pairs of atoms in the peptide to 
gether with the torsion term for all torsion angles. The parameters for the energy function 
were adopted from ECEPP/2,34-ss and the computer code KONF90,‘5*‘6 which is based 
on Metropolis algorithm,3Q was modified to accomodate the multicanonical method. The 
peptide-bond dihedral angles w were fixed at the value 180” for simplicity, which leaves 19 
dihedral angles as independent variables. 

Multicanonkal Algorithms 

Since the multicanonical algorithm is already described in detail elsewhere,23 we give only 
a short overview in this subsection. In the canonical ensemble, configurations at an inverse 
temperature j E l/RT are weighted with the Boltzmann factor 

Y%(E) = exp -pE . ( > (1) 

The resulting probability distribution is given by 

b(E) = n(E)%(E) > (2) 
where n(E) is the spectral density. Since n(E) is a rapidly increasing function and the 
Boltzmann factor decreases exponentially, PB (E) g enerally has a bell-like shape. At a finite 
temperature the value of PB(E) f or 1 ow E is smaller by many orders of magnitudes than the 
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maximum value of Ps( E) (see Fig. 1 below). 

In the multicanonical ensemble,23~25 on the other hand, the probability distribution is 
defined in such a way that a configuration with any energy enters with equal probability: 

Pmu(E) oc n(E)P&E) = const. 

It then follows that the multicanonical weight factor should have the form 
(3) 

P.&E) oc n-‘(E). (4 

In order to define the explicit form of this weight factor, we introduce two parameters a(E) 
and /3(E) as follows: 23*24 

pm,,(E) E eeBtE) = exp{ -@ + /3(E))E - (Y(E)}. (5) 

Note that for any fixed P(E) and (y(E) this leads to the canonical weight factor with the 
inverse temperature ,8 = p •t P(E), th ere ore the name “multicanonical”. From Eqs. (4) and f 
(5) we have 

e-P(W-4E) o( pi’ , 
(6) 

and this equation is used to determine CY(E) and P(E) as explained in the next subsection. 
The standard Markov process (for instance in a Metropolis update scheme 3Q) is well- 

suited to generate configurations which are in equilibrium with respect to the multicanonical 
distribution. Since in the multicanonical ensemble all energies have equal weight, the energy 
is enforced onto a one-dimensional random walk (when simulated with local updates) which 
insures that the system can overcome any energy barrier. 

Since Pi’(E) is not a priori known, one needs for a numerical simulation estimators for 
the multicanonical parameters p(E) and Q(E). 0 nce they are determined, one multicanoni- 
cal run is in principle enough to find the global minimum and to calculate all thermodynamic 
quantities by re-weighting.26 

Implementation of the Algorithm 

In an actual simulation the parameters a(E) and /3(E) can be determined as Jollows. 
We first run a canonical Monte Carlo simulation at a sufficie@lyAhigh temperature ,&‘. We 
approximate Ps(pO, E) at this temperature by a histogram P~(/lo, E;) (i = 1, - -. , N) where 
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N is the number of energy bins. We then determine the mode, E,,,,,, of the histogram, 
where the histogram has its maximum. By Eq. (6) we have 

- B(&)Ei - 43) = ln(&‘(&, E;)) + const. E y; . (7) 

The parameters a(Ei) and p(Ei) can now be obtained, for example, by connecting two 
adjacent points (Ei, yi) and (Ei+l, yi+r) by a straight line (-p(Ei) being the slope of the 
line). We restrict ourselves to the energy range E 5 Em,,, setting P(E) = 0 and a(E) = 0 
outside of this range. If necessary, this procedure is iterated for a few times until the obtained 
distribution P’,( Ei) b ecomes reasonablly flat in the chosen energy range. Furthermore, near 
the ground-state energy we expect to see this flat distribution drop to zero abruptly in a 
step-function like behavior. This is the criterion for the optimal choice of a(E) and /3(E). 
After determination of a(E) and P(E), we make one long production run. Note that the 
transition probability u)( E + E’) for Metropolis criterion is now given by 

w(E + E’) = 1, if A E B(E’) -B(E) 5 0, (8) 
= e -A 

3 ifA>O, 

where B(E) is defined in (5). F rom this production run one can not only locate the global- 
Tnergy minimum but also obtain the canonical distribution at any temperature /?’ for all 
P L PO. 31 The latter is done by the re-weighting techniques26 as follows: 

c eBtE)-jE Pmu( E) 

P&E) = E F pmuw * (9) 

For our study of Met-enkephalin, we first made a preliminary canonical simulation at 
T = 1000 K with lo4 Monte Carlo steps. We iterated this process four times to determine 
optimal o(E) and P(E). We then made one production run with 10’ Monte Carlo steps 
recording the time series of the energy and the torsion angles. The CPU time for the pro- 
duction run was x 370 minutes on an IBM RS/SOOO [320H] workstation. 

RESULTS 
Average Energy and Specific Heat 



We analyze the results of the production run by first calculating the (canonical) proba- 
bility distributions, average energy, and specific heat at various temperatures. 

In Fig. 1 we show the multicanonical probability distribution Pmu(E) together with the 
canonical distributions PB(E) at T = 50 K, 300 K, 500 K, and 1000 K. These PB were 
obtained from Pmu(E) by the reweighting of (9). Note that P,,,"(E) is nearly flat (at least 
of the 8ame order) throughout the whole energy range, while PB(E) do vary many orders 
of magnitude as a function of energy. In particular, at higher temperature8 (2’ = 500 K 
and 1090 K) where energy barriers can be easily overcome, it would require canonical sim- 
ulations at least 10” more simulation time than multicanonical algorithm to explore the 
global-minimum energy region with the same quality of statistics. This clearly illustrates 
the advantage of multicanonical method over the canonical Monte Carlo simulations at a 
fixed temperature. 

In Fig. 2 we show the average energy as a function of temperature. This was again 
obtained by the re-weighting of (9). Th e v al ues vary smoothly over the whole temperature 
range. To roughly estimate the error8 of our data, we divided our time series into two bins, 
the first half and the second half of 10’ Monte Carlo steps. We calculated the averages sepa- 
rately for both bins and took their difference as an estimate for the error, which we included 
(for certain temperatures) in the figures. The value z -12 kcal/mol at T = 50 K is very 
close to the global-minimum energy obtained by other methods. 18*21*37*s8 This indicates that 
the multicanonical algorithm avoids being trapped in a local-energy minimum. In order to 
illustrate the -effectiveness of the algorithm, we have also listed in the Figure the values ob- 
tained from fixed temperature canonical simulations with 10’ Monte Carlo steps at T = 50 K 
and 300 K. Note that the value for T = 50 K is completely off from the multicanonical result, 
indicating that this canonical run got trapped in a local minimum. The value at T = 300 
K seems in agreement with the multicanonical run. In fact, this kind of analysis will tell us 
how many Monte Carlo steps are necessary in order that a usual canonical simulation at a 
certain temperature may be trusted. 

In Fig. 3 we likewise present the “specific heat” (per residue), which is defined by 

c = p* <E*>-<E>* 
5 * (10) 

It has a peak around T = 300 K, which indicates that this temperature is important for 
peptide folding. The result agrees with the previous evaluation from canonical simulations 
at several temperatures. 4o The results from the canonical simulations at T = 50 K and 300 
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K also agree roughly with the multicanonical results. This indicates that energy fluctua- 
tions are not much different whether we do simulations in the entire conformational space 
or around a local minimum. 

Lowest-Energy Conformation 

During the production run the system reached the global-energy minimum region in six 
separate short time spans. The lowest-energy conformation within each visit is listed in 
Table I together with the global-minimum energy conformation (Conformation A in Table I) 
obtained by simulated annealing. *l Conformation A has essentially the same structure as 
the global-minimum conformation obtained by another method.37 The small differences pre- 
sumably arise because the peptide-bond dihedral angles w were fixed at the value 180” in 
Ref. 21, while they were allowed to vary in Ref. 37. Since we use the same computer code, 
KONF90,15~1s as in Ref. 21 and fix w at 180” in this work, we compared the present simu- 
lations with the global-minimum conformation of Ref. 21 (Conformation A in Table I). We 
remark that fixing the w angles to the values of Ref. 37 we were able to reproduce essentially 
the same structure as in Ref. 37. 

In-Table I, Conformations l-6 are the results at Monte Carlo steps 20128, 39521, 44462, 
65412, 89413, and 95143. Hence, the system reached the lowest-energy region in every 5000 
to 20000 Monte Carlo steps. The energies are almost all equal, and the lowest-energy value in 
the present work (412.1 k ca mo I/ 1) 
by simulated annealing. *l 

is slightly less than the previous result (-11.9 kcal/mol) 
Most of the dihedral angles of the six conformations also agree 

with the corresponding ones of Conformation A within % 5’ . Hence, the conformations 
in Table I are all equivalent. Note that these six conformations were obtained by only one 
production run of multicanonical simulation, while Conformation A was one of 40 Monte 
Carlo simulated annealing runs (with lo4 Monte Carlo steps). In this respect multicanonical 
algorithm is superior to simulated annealing; only one run is required for the former, whereas 
in the latter one does not know a priori how many runs are required and the convergence 
must be tested by running at least several times. 

By utilizing the re-weighting of (9), we have calculated the the fraction in which the 
lowest-energy conformation exists at various temperatures (50 K, 300 K, and 500 K). For 
this we consider that a conformation is of the lowest-energy structure if all the 18 dihedral 
angles agree with those of Conformation A in Table I within f20”. The results are shown 
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in Fig. 4. A8 expected, at T = 50 K the peptide is almost always in “ground state”. As the 
temperature rises, the conformation is thermally excited and the fraction in Fig. 4 decreases. 
However, at T = 300 K the peptide still stays close to the “ground state” for a substantial 
amount of time ( kz 35 %). This kind of analysis will be useful in understanding the relation 
between the conformation with the global-minimum potential energy and the native confor- 
mation around room temperature. 

CONCLUSIONS AND DISCUSSION 

In this article we have applied the recently developed multicanonical algorithm to the 
problem of peptide conformation prediction. This method avoid8 getting trapped in a local 
minimum of energy function by connecting back to high temperature states and enhances in 
this way the probability to find the global minimum. This property is exactly what we need 
for peptide structure prediction. We have demonstrated the effectiveness of the algorithm by 
reproducing the lowest-energy conformation of Met-enkephalin. This was achieved by only 
one production run of simulation, whereas another powerful method for overcoming energy 
barrier8 such a8 simulated annealing usually requires much more runs to confirm the results. 
Furthermore, the multicanonical algorithm can yield various thermodynamic quantities as a 
function of temperature from only one production run. This was not possible by previous 
methods. To illustrate this property, we have calculated the average energy and specific heat 
at various temperatures. 

Although our method for the determination of the multicanonical parameters Q(E) and 
P(E) is quite general, it required about 50 % of the CPU time spent for the production 
run. It is thus desirable to develop a more efficient method for the determination of these 
parameters. Work in this direction is in progress. 

As far as one is only interested in finding the global minimum, another promising al- 
gorithm would be a related method, random cost optimization. 4* Comparison of the per- 
formance of the multicanonical algorithm and random cost optimization in the problem of 
peptide structure prediction is now under way. 
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Table I. Energy and dihedral angles of the lowest-energy conformations of Met-enkephalin 
obtained by multicanonical runs.” 

Conformation 
E [ kcal/mol ] 

dl 

$1 

42 

to2 

#3 

$3 

44 

$4 

45 

fr 

x: 

Xf 
xi 

Xi 
Xi 
XX 
XZ 
Xt 

A 1 2 3 4 5 6 
-11.9 -11.9 -12.0 -12.0 -12.1 -12.0 -11.9 

98 90 91 90 97 96 98 
154 153 152 154 151 153 156 

-161 -160 -157 -161 -158 -161 -163 
69 72 64 71 71 68 65 
65 64 66 63 64 64 66 

-93 -95 -92 -95 -94 -89 -92 
-85 -82 -80 -77 -83 -85 -80 
-27 -26 -29 -32 -30 -31 -29 
-83 -81 -82 -78 -80 -82 -86 
142 142 138 137 145 151 147 

-179 179 -177 179 179 -178 -176 
-112 -110 -117 -109 -111 -115 -114 

149 144 146 143 149 145 142 
180 -176 178 177 180 -178 180 

73 79 81 86 79 78 78 
-65 -64 -67 -67 -66 -67 -66 
180 -179 180 180 -176 180 176 
179 178 179 -179 -179 -178 -178 

-55 -66 -59 -62 -61 -60 -57 

a Conformation A is the lowest-energy conformation obtained by Monte Carlo simulated 
annealing (taken from Ref. 21). 
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Figure Captions 

Figure 1. Probability distributions of multicanonical ensemble (*) and canonical ensembles 
at 2’ = 50 K (+), 300 K (x), 500 K (o), and 1000 K (0) for Met-enkephalin. 

Figure 2. Average energy of Met-enkephalin as a function of temperature evaluated by mul- 
ticanonical algorithms. The results of canonical simulations at fixed temperatures (50 K and 
300 K) are also plotted (0). 

Figure 3. Specific heat of Met-enkephalin as a function of temperature evaluated by multi- 
canonical algorithms. The results of canonical simulations at fixed temperatures (50 K and 
300 K) are also plotted (0). 

Figure 4. Fraction of the occurence of the lowest-energy structure of Met-enkephalin as a 
function of temperature. 
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Fraction of Group A Conformations vs. Temperature 
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