NST 160 Theil Selenium Lecture 1 October 27, 2004 Selenium Nutrition and Physiology

Reading

Chapter 12: Insel, P., R.E. Turner, and D. Ross. *Nutrition*, 2nd Ed.

Chapter 34: (Reserve BioSci Library) Stipanuk -Biochemical and Physiological Aspects of Human Nutrition

Driscoll and Copeland, Annu Rev Nutr. 2003; 23:17-40

NST 160 website:

http://nutrition.berkeley.edu/undergrad_class/nst1-60/ NST 160, Theil Selenium Lecture 1

Selenium - Chemistry

Atomic number : 34

Periodic Table: Se (34) - same <u>group</u> as S (16) and O (8). Se (34) - same <u>period</u> as Mn(25), Fe(26), Cu(29), Zn(30)

Atomic weight (FW) g/mole: 78.9

Outer electron configuration: 3d = 10 (like Zn); 4s = 2; 4P = 4, Se ⁴⁺ and Se ⁶⁺; semiconductor

Solubility: Na₂SeO₄⁻² - 4.4 M

Elements of Life- Abundance: Period 1 > 2 > 3 > 4

Selenium - Physiology

Plasma concentration: (6-8 µg/L)

Plasma transport: in SeIP (selenoprotein) and on serum albumin as selenite and selenide

Content (human body): 13-23 mg / 70 kg

Tissue distribution: 61% + muscle + liver+ kidney + blood); 30% in bone (related to thyroxine activity)

Recognition of biological relevance very recent! 1957 – Animal Se deficiency; 1980's: Humans - Keshan Disease

Selenium - Nutrition UL (Safe daily intake upper limit): 400 μg/day RDA: 55 μg/day

Most American diets are Se sufficient.

Sources: Organ meats: seafoods, muscle meats Examples: beef liver, lobster tail, shrimp. tuna steak, pork loin Plants: Variable with soils Absorption: Seleno-amino acids are 50-90% absorbed

Enhancers: Vitamins A, C, E

Low soil Se/ high vegetable consumption \rightarrow Se deficiency (Example: Keshan province in China)

Se Toxicity: Rare overall except in selected geographic areas

Originally thought to be environmental toxin for livestock (1949 = "Awful poison")

High Se soil Natural: North and South Dakota, Colorado Irrigation- San Joaquin Valley reservoir High Se plants-absorb soluble Se →Se-methionine, Se cysteine)

Toxic effects:Cattle, sheep "blind staggers" /alkaline (soil) disease;anemia, hair loss, paralysis

Toxicity:

Chronic: > 5 ppm in total diet Acute : 1-10 mg/Kg

Botanical Se indicator

Selenium Distribution in the U.S.

Selenium - Deficiency

Keshan's Disease- Discovered in the 1980's

- Readily treated by Se Supplementation- Na SeO₃
- Mainly in rural poor –low Se soil, low meat diet
- Urban population higher meat intake, little affect
- Myocardial necrosis (Oxidative damage?). (Thyroxine deiodinase, key to active hormone synthesis, is an Se protein

*Kashan-Beck: Osteoarthiritis – China; may be Se + I deficiencies

*Other: Goiter – New Zealand; linked to iodine deficiency

*Not fully characterized

Selenium and Cancer

Selenium compounds appear to have "anti-cancer" properties

Mechanism:

Human metabolism of plant selenomethionine? Se-protein catalysts? Both?

Anti-oxidant Se proteins Glutathione peroxidase, thioredoxin reductase, Met sulfoxide reductase Methylselenol (CH₃SeH) has anticancer activity: Se Met (Dietary Plants) →CH₃SeH → apoptosis of malignant cells

Selenium Biochemistry

NST 160, Theil Selenium Lecture 1

Selenate

Selenite

GS-Se-SG

Selenium- Selenoproteins

1. Oxidative metabolism rates: Tissue T4 deiodinases - convert T4 to T3

Thyroxine (T4) made in thyroid, circulates in blood; cells convert T4 to T3, which binds thyroid hormone receptor; Multiple forms, many cell types

2. Cellular redox control: Thioredoxin* (Trx) Reductase (TrRX) Trx-S₂ + NADPH + H+ \rightarrow Trx-(SH)₂ + NADP⁺

All cell types-multiples forms

Expression changes in differentiation and cancer

*Thioredoxins: a group of small (~ 12 kDa) redox proteins, present in all cells converts glutathioneox, a hexa –peptide (GS-SG) to 2 glutathione (GSH), a tripeptide

Selenium- Selenoproteins (cont.)

3. Resistance to oxidative damage - Glutathione Peroxidase (GPX)

Reverse membrane (lipid) oxidation; destroy H₂O₂.

2 GSH + ROOH \rightarrow ROH + H₂O + GSSG; R= fatty acid

Multiple GPX forms

RBC GPx, first Se-protein identified; all cells-GPX1

Plasma- GPX 3

Enterocyte GPX-2*

Liver GPX -1,3,4

Se dietary deficiency response is hierarchal

GPX4<GPx3 < GPX 1

*Predict GPx 3 sensitivity [Se]- High? Low?

Selenium- Selenoproteins (cont.)

4- Plasma Se transport, antioxidative activity - Sel P

5. Methionine sulfoxide reductase- Sel R

 6- "Orphan" Se proteins: ~ 10-30
Detected with surveys of DNA sequences for SECIS (<u>Sec</u> Insertion <u>Sequence</u>) elements

Selenocysteine – Structure, DNA Code

Cysteine

Seleno - Cysteine

AUG Start

Cysteine	UGU	
Cysteine	UGC	
Selenocysteine	UGA	One codon – two uses
Stop	UGA	AUG Methionine

Summary

Selenium Nutrition and Physiology

- a) Toxicity: known before physiological requirement
- b) Sufficiency: range narrow
- c) Deficiency: cardiomyopathy ; Goiter (+ I⁻ def.); osteoarthritis
- d) Cancer: Se derivatives have anti-tumor activity
- e) Distribution:
 - All cells
 - Hi-Blood, Liver, muscle, bone
 - **Cell-specific isoforms**
- f) Source: Cereals, vegetables

Selenium Biochemistry

a) Two amino acids:

Selenocysteine – synthesis: humans, animals, plants, bacteria Selenomethionine- synthesis:plants, converted to Sec in animals and humans

- b) Se catalysts: antioxidant peroxidases, reductases (GPx, TrRX, SeIR) and T4 deiodinases
- c) Se regulation: protein- specific and hierarchal
- d) Sec DNA code: 21st codon; second use UGA termination codon