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Abstract 

We demonstrate that the multicanonical approach is not restricted to Monte Carlo simulations, but can also be applied to 
simulation techniques such as the molecular dynamics, Langevin and hybrid Monte Carlo algorithms. The effectiveness of 
the methods is tested with an energy function for the protein folding problem. Simulations in the multicanonical ensemble by 
the three methods are performed for a penta peptide, Met-enkephalin. For each algorithm, it is shown that from only one 
simulation run one cannot only find the global minimum energy conformation but also obtain probability distributions in the 
canonical ensemble at any temperature, which allows the calculation of any thermodynamic quantity as a function of 
temperature. 

1. I n t r o d u c t i o n  widely used algorithms for locating the global mini- 
mum state out of  the multitude of  local minimum 

Simulations in a system with many degrees of  states. The multicanonical approach [2,3] is another 
freedom by conventional methods such as molecular  powerful  technique. The advantage of  this algorithm 
dynamics  (MD) and Monte Carlo (MC) can sample lies in the fact that from only one simulation run one 
only a small portion of  the entire phase space, ren- cannot only find the energy global minimum but also 
dering the calculations of  various thermodynamic calculate various thermodynamic quantities at any 
quantities inaccurate. This is because the energy temperature. The method was originally developed to 
function has many local minima,  and at low tempera- overcome the supercritical slowing down of  first- 
tures simulations will necessari ly get trapped in the order phase transitions [2,3], and then proposed to be 
configurations corresponding to one of  these local used for systems that suffer from the multiple min- 
minima. In order to overcome this multiple minima ima problem such as spin glasses [4] and the protein 
problem, many methods have been proposed. For  folding problem [5]. The same method was later 
instance, simulated annealing [1] is one of  the most referred to as entropic sampling [6], but a proof  of  

the equivalence of  the two methods was given to 

J E-mail: hansmann@ims.ac.jp clarify the matter [7]. In the context of  the protein 
2 E-mail: okamotoy@ims.ac.jp folding problem, the effectiveness of  multicanonical 
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annealing [8]. It was also used to study the coil-  a 1D random walk in energy space, allowing itself to 
globular transitions of a model protein [9], helix-coil escape from any energy barrier and to explore a wide 
transitions of amino acid homo-oligomers [10], and range of the phase space. 
conformational sampling of a constrained peptide Unlike in a canonical simulation, however, the 
[11]. multicanonical weight Wmu(E) is not a priori known, 

In all of the previous works the multicanonical and one has to obtain its estimator for a numerical 
ansatz was used in the context of Monte Carlo simulation. Hence, the multicanonical ansatz consists 
simulations utilizing mostly the Metropolis algorithm of three steps. In the first step the estimator of the 
[12] to generate a Markov chain of configurations, multicanonical weight factor Wmu(E) is calculated 
However, other simulation techniques such as molec- (for details of the method of finding Wmu(E) for the 
ular dynamics [13] are also widely used. The purpose case of the Metropolis Monte Carlo algorithm, see 
of the present work is to demonstrate that these Refs. [3,8]). Then one makes with this weight factor 
techniques can be used for simulations in a multi- a production run with high statistics. In this way 
canonical ensemble. Here, we consider three com- information is collected over the whole energy range. 
mon algorithms: molecular dynamics, Langevin [14] Finally, by examining the history of this simulation, 
and hybrid Monte Carlo [15]. The performances of one cannot only locate the energy global minimum 
the algorithms are tested with the system of an but also obtain the canonical distribution at any 
oligopeptide, Met-enkephalin. inverse temperature /3 for a wide range of tempera- 

tures by the re-weighting techniques [16]: 

2. Methods PB( E, T) ot Pmu(E) Wmu 1 ( E ) e -  Be. (6) 

This allows one to calculate the expectation value of 
2.1. Multicanonical ensemble any physical quantity @ by 

Simulations in the canonical ensemble at tempera- f d E @ ( E )  PB( E, T)  
ture T weigh each state with the Boltzmann factor ( @ ) r  = ~ (7) 

wB(E, T) = e  -~E, (1) f d e p B ( e ,  ~)  

where the inverse temperature is given by/3 = 1/kBT In the following subsections, we describe how to 
with Boltzmann constant k B. This weight factor implement multicanonical simulations for the 
gives the usual bell-shaped canonical probability dis- Langevin, molecular dynamics and hybrid Monte 
tribution of energy: Carlo algorithms. 

v~( e,  T) a n( e)w~( e,  T),  (2) 
2.2. Langevin algorithm in a multicanonical ensem- 

where n(E)  is the density of states, ble 
In the multicanonical ensemble [2], on the other 

hand, the probability distribution of energy is de- The Langevin algorithm [14] is used to integrate 
fined to be constant: the following differential equation: 

emu (E) (X n(E) Wmu (E) ~- const. (3) ^ 0E(q)  

The multicanonical weight factor for each state with qi = - / 3  Oqi + ~li, (8) 

energy E is then given by where qi (i = 1 . . . . .  N) are the (generalized) coodi- 

Wmu ( E )  Ot n - l  ( E )  = e -s(e), (4) nates of the system, E(q) is the potential energy and 
where S(E) is the microcanonical entropy (with ~)i is a set of independent Gaussian distributed ran- 
k B = 1): dom variables with a unit variance: 

S(E) = In n(E). (5) ('rli(tl)'rlj(t,n)) = ~ i j t~ ( t l -  tin). (9) 

With the uniform probability distribution of Eq. (3), It can be shown that the dynamics based on the 
a simulation in the multicanonical ensemble leads to Langevin algorithm yields a canonical distribution 
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PB(E, T) ot n(E)e -~e. For numerical work one inte- eralized) coordinates of a system. E(q) is the poten- 
grates the above equation by discretizing the time tial energy of the system. The above equation is 
with step At: mathematically identical with 

( ~OE(q) ) f DqD~r@(q) e x p [ _ ~ . , , = l ~ r ~ / 2 m i _ ~ E ( q )  ^ 
q i ( t + A t ) = q i ( t ) - k A t  --[:JO~i(t)  "br l i ( t )  • (@), 

(10) f Dq D~- exp[- Eis__ It/2/2m,-/~E(q)] 

A straightforward generalization of this technique (15) 
to simulations in a multicanonical ensemble can be where we used the notation DTr = l-li=~N dTr r Identi- 
made by replacing the /3E in Eq. (8) by the micro- fying the auxiliary variables 7r i with the conjugate 
canonical entropy S(E): momenta corresponding to the coordinates qi, we 

- 0 S (  E ( q )  ) can describe our system with a Hamiltonian 

1 N ili 8qi +rli. (11) n ( q ,  7r) = -~ ~, Tr2 + fiE(ql . . . . .  qN), (16) 

The above equation now describes dynamics which i= 1 
will yield a multicanonical distribution Pmu(E) 0t where we have set all the masses m i equal to 1 for 
n(E)e -s(e) = const (see Eq. (4)). (A similar consid- simplicity. 
eration of the multicanonical Langevin algorithm is The classical molecular dynamics algorithm uses 
given in Ref. [17].) Hence, for the actual simulations Hamilton's equations of motion 
we use the following difference equation: OH 

qi( t + At) = qi( t) + At - + rli( t) . Ozr 
Oqi (t) OH ^ OE 

(12) ~ri = - 0q---~. = - / 3 ~ q / ,  (17) 

We remark that Eq. (11) can be written as to generate representative ensembles of configura- 
a % ( q )  tions. For numerical work the time is discretized 

0S 0E(__q) + r/i = - /3 ( E )  + r/i, with step A t and the equations are integrated accord- 
(]i ~-  OE Oqi qi ing to the leapfrog (or other time reversible integra- 

(13) tion) scheme: 

where/3(E)  is an energy-dependent effective inverse qi(t + At) = qi(t) + At~ri(t + ½At), 
temperature. In this notation the term "multicanoni- 

0E 
Eq.Cal"(g)).bec°mes obvious (compare Eq. (13) with 7r i l t+~At~=~ri l t+½At~--At~oqi ( t+At  ) ' ~ l ~ l  

(18) 
2.3. Molecular dynamics algorithm in a multicanoni- 
cal ensemble The initial momenta {~i(½At)} for the iteration are 

prepared by 

The expectation value of a physical quantity @ is 0E 
calculated by ,rri(½At) = "n'i(0) _ 7At/3Oqi(O ) l  ^ , (19) 

f Dq~(q)e  -Jffg(q) with appropriately chosen qi(O) and 'rri(0) ('r/'i(0) is 
( ~ ' ) r  = , (14) from a Gaussian distribution). 

f dqe -~e(q) In order to generalize this widely used technique 
to simulations in a multicanonical ensemble, we 

where the integration measure is defined by Dq = again propose to replace /3E by the entropy S(E) in 
H~=I dqi and qi ( i  = 1 . . . . .  N) are again the (gen- Eqs. (17), (18) and (19) (just as we did for the 
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Fig. 1. (a) Time series of the total potential energy E ( k c a l / m o l )  from a mult icanonical  Langevin simulation of  400000 X 19 t ime steps with 

step size A t  = 0.0001. (b) Time series of E from a mult icanonical  molecular  dynamics  simulation of  400000 X 19 t ime steps with step size 
A t  = 0.005. (c) Time series of E from a mult icanonical  hybrid Monte Carlo simulation of  200000 MC steps. For each MC step an MD run 

of 19 time steps was made with step size A t =  0.01. 
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Fig. 1. (continued). 

Langevin algorithm). Hence, we have a new "Ham-  Metropolis Monte Carlo algorithms; namely, each 
iltonian" proposal for the Metropolis method is prepared by a 

1 N short MD run starting from the actual configuration. 
H(  q, ~ ' ) =  ~ Y'. ~./2 + S( E ( q ) ) ,  (20) Hence, this algorithm is based on a global update, 

i= l while in the conventional Metropolis method one is 
and a new set of Hamilton's equations of motion usually restricted to a local update. Furthermore, the 

OH Metropolis step ensures that the sampled configura- 
qi = 0zrj = 7ri' tions are distributed according to the chosen ensem- 

OH 0 S ( E ( q ) )  0S 0E(q)  ble, while conventional molecular dynamics simula- 
/r i = tions are hampered by difficult-to-control systematic 

Oq, ~qi OE aqi errors due to finite step size in the integration of the 
(21 ) equations of motion. 

This is the set of equations we adopt for multicanon- Given the set of coordinates {q~} of the previous 
ical MD simulations. Formally, it can be understood configuration and choosing the corresponding me- 
as a rescaling of the usual force term by the deriva- menta {Tr i} from a Gaussian distribution, a certain 
tive of the entropy. For numerical simulations the number of MD steps are performed to obtain a 
Hamilton equations are again discretized in time and candidate configuration {q'i, 7r~}. This candidate is 
integrated by a leapfrog scheme. In analogy to the accepted according to the Metropolis Monte Carlo 
case of canonical MD, convergence to the multi- criterion with probability 

canonical ensemble can be proven if 1 N ~ E i =  1"/7"? is 
kept fixed, p = min{ 1, e-(H(q"rr')-H(q'~r))}, (22) 

2.4. Hybrid Monte Carlo algorithm in a multicanoni- 
cal ensemble where H is the Hamiltonian in Eq. (16). The time 

reversibility of the leapfrog integration scheme en- 
The hybrid Monte Carlo algorithm [15] is based sures detailed balance and therefore convergence to 

on a combination of the molecular dynamics and the correct distribution. The whole process is re- 
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peated for a desired number of times (Monte Carlo parameters in the hybrid Monte Carlo algorithm, 
steps). The number of integration (leapfrog) steps which have to be tuned carefully. A choice of too 
NLF and the size of the time step At are free small NLF and At means that the sampled configura- 
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Fig. 2. (a) Time series of end-to-end distance r (,~,) from the multicanonical hybrid Monte Carlo simulation. (b) The average end-to-end 
distance r as a function of potential energy E obtained from the multicanonical hybrid Monte Carlo simulation. 
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Fig. 3. Probability distribution of potential energy E obtained from the multicanonical molecular dynamics simulation. 

tions are too much correlated, while too large NEE computer code SMC i was modified to accommo- 
(or A t) yields high rejection rates. In both cases the date the multicanonical ensemble. 
algorithm becomes inefficient. For the coordinates {qi} w e  used the dihedral 

The generalization of this technique to simula- angles. (We remark that it was recently claimed that 
tions in a multicanonical ensemble can again be convergence is faster for the dihedral coordinates 
made by replacing the Hamiltonian of Eq. (16) with [22]. We could have used Cartesian coordinates as 
the multicanonical Hamiltonian of Eq. (20), i.e. re- well with the same set of equations.) The peptide- 
placing /3E by the entropy S(E) in the equations of bond dihedral angles to were fixed to be 180 ° for 
motion, simplicity. This leaves 19 dihedral angles as general- 

ized coordinates. By the definition of a multicanoni- 
cal ensemble, one cannot obtain information on the 

3. Results and discussion real dynamics of the system by the MD algorithm, 
and only static thermodynamic quantities can be 

The effectiveness of the algorithms presented in calculated. For this reason we need not consider the 
the previous section is tested for the system of an equations of motion for a dihedral space as presented 
oligopeptide, Met-enkephalin. This peptide has the in Ref. [23], but can use the much simpler form as 
amino acid sequence Tyr -Gly-Gly-Phe-Met .  The given in the previous section. However, we remark 
potential energy function that we used is given by that this may not be the optimal choice. Often it may 
the sum of an electrostatic term, a Lermard-Jones be more suitable to distinguish between "sof t"  and 
term and a hydrogen-bond term for all pairs of atoms "hard"  degrees of freedom and introduce appropri- 
in the peptide together with the torsion term for all 
torsion angles. The parameters for the energy func- 
tion were adopted from ECEPP/2  [18-20]. The l The program SMC w a s  written by Eisenmenger [21]. 
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ately chosen "masses" in the equations of motion 0.01 in our units. The initial conformation for all 
[22]. three simulations was the final (and therefore equi- 

For the multicanonical MD simulations, we made librized) conformation obtained from a multicanoni- 
a single production run with the total number of time cal Monte Carlo simulation of 200000 sweeps, fol- 
s t e p s  NLF = 400000 X 19 and the time-step size At lowing 1000 sweeps for thermalization with the same 
= 0.005 (in arbitrary units), after the optimal esti- weights (in each sweep all of the 19 angles were 
mate for the multicanonical weight factor Wmu(E), or updated once). 
entropy S(E), was obtained. For the multicanonical In Fig. 1 the time series of the total potential 
Langevin algorithm, a production run with the same energy are shown for the three multicanonical simu- 
number of time steps (NEE = 4 0 0 0 0 0  X 19) as in the lations. They all display a random walk in energy as 
MD simulation, but our optimal time-step size was they should for a simulation in a multicanonical 
only At = 0.0001. This indicates that the simulation ensemble. All the lowest-energy conformations were 
moves more slowly through phase space, and we essentially the same (with only a small amount of 
expect slower convergence to the multicanonical dis- deviation for each dihedral angle) as that of the 
tribution than in the MD case. For the multicanonical global minimum energy conformation previously ob- 
hybrid Monte Carlo algorithm, an MD simulation tained for the same energy function (with to= 180 °) 
with 19 leapfrog steps was made for each Monte by other methods [5,24,25]. The global minimum 
Carlo step and a production run with 200000 MC potential energy value obtained by minimization is 
steps was made. Since the Metropolis step in hybrid - 10.7 kcal/mol [25]. The random walks of the MD 
Monte Carlo corrects for errors due to the numerical and hybrid MC simulations visited the global mini- 
integration of the equation of motion, the time-step mum region (E < - l0 kcal/mol) three times and 
size can be large for this algorithm. We chose A t = five times, respectively, while that of the Langevin 
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Fig. 4. Microcanonical entropy S(E) as a function of potential energy E obtained from the multicanonical molecular dynamics simulation 
(MMD) and multicanonical Monte Carlo simulation (MMC). 
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simulation reached the region only once. These visits 2b, where we display the average end-to-end dis- 
are separated by walks towards the high energy tance r as a function of potential energy E. 
region much above E = 16 kcal /mol ,  which corre- In Fig. 3 we demonstrate that the probability 
sponds to the average energy at T =  1000 K [5]. We distribution Pmu(E) of potential energy E obtained 
remark that the random walk for a regular multi- from the multicanonical MD simulation is essentially 
canonical Monte Carlo simulation reached the global flat (of the same order of magnitude) over the whole 
minimum region about four times in 200000 MC energy range. Similar figures can be drawn for the 
sweeps [8]. Hence, the rate of convergence to the other two algorithms. 
multicanonical ensemble is of the same order for all In Fig. 4 the entropy S(E) calculated from the 
four methods (with the MD and Langevin algorithms probability distribution Pmu(E) is displayed (see Eqs. 
being slightly slower). As discussed below, however, (3) and (4)), where we set S(20) = 0 for normaliza- 
the results of thermodynamic quantity calculations tion. The result from the multicanonical MD simula- 
all agree with each other, implying that the methods tion is given, since the other two simulations give 
are equally reliable, essentially the same results. It is a monotonically 

In Fig. 2a the time series of the end-to-end dis- increasing function. Note that there is a sudden drop 
tance r is plotted. Here, the distance was measured of S(E) near E = - 1 0  kcal /mol ,  suggesting that 
from N of Tyr 1 to O of Met 5. Only the result from the global minimum conformation is "unique".  The 
the multicanonical hybrid Monte Carlo simulation is result from the earlier MC run in a multicanonical 
given, since the other two simulations give similar ensemble [8] is also shown in Fig. 4 for comparison. 
results. Note that there is a positive correlation be- They are in complete agreement, indicating that both 
tween potential energy E and end-to-end distance r algorithms converged to the same distribution. 
(compare Figs. lc and 2a), indicating that a folded Simulations in a multicanonical ensemble cannot 
structure generally has a lower potential energy than only find the energy global minimum but also any 
a stretched one. This becomes even clearer in Fig. thermodynamic quantity as a function of temperature 
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Fig. 5. The average  end- to-end  dis tance r ( ~ )  as a funct ion  o f  temperature  T (K)  obta ined  f rom the mul t icanonica l  Langev in  simulat ion.  
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from a single simulation run. We have calculated the [17,23]. Our simulations were performed on the corn- 
specific heat and average potential energy as func- puters of the Computer Center at the Institute for 
tions of temperature for the three algorithms. The Molecular Science, Okazaki, Japan. This work is 
results all agreed within errors with those from our supported, in part, by Grants-in-Aid for Scientific 
previous multicanonical MC runs (see, for instance, Research from the Japanese Ministry of Education, 
Refs. [5,8]). Here, we just show another example of Science, Sports and Culture. 
such a calculation, the average end-to-end distance 
as a function of temperature. The results are essen- 
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