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Abstract

Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time,
materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from
limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment
affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS:
Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules
to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen
bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico
free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps)
indicating favorable fragment:protein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method
yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides.
These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two
peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can
be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico
docking that incorporate both an atomic-level description of solvation and protein flexibility.
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Introduction

Fragment-based drug discovery relies on a simple premise:

identify small-molecule fragments that bind to a target region of

the protein and then evolve or link them to create a larger high-

affinity molecule. To a first approximation, the binding free-

energies of fragments bound in non-overlapping poses are additive

[1]. Therefore, linking two such fragments with millimolar

affinities (4 kcal*mol21) will yield a single molecule with

micromolar affinity (8 kcal/mol), which is of sufficient affinity to

serve as a ‘‘hit’’ for lead optimization [2]. Since the chemical space

spanned by small fragments is orders of magnitude smaller than

that spanned by molecules of sufficient size to be hits, it becomes

feasible to screen a fragment library representative of the full

extent of chemical space [3].

Nature imposes an upper limit on the contribution per ligand

heavy atom to the binding free-energy [4], commonly referred to

as ‘‘ligand efficiency’’ (LE) [5]. This limit means that even the best

fragments (LE 0.4–0.5 kcal*mol21 per heavy atom [3]) still have

weak affinities for their targets, making their screening by

traditional assays difficult. Consequently, fragment-based drug

discovery relies on sensitive biophysical methods to detect

fragment binding. Among these methods are NMR spectroscopy

(‘‘SAR-by-NMR’’) [6] and x-ray crystallography [7]. These two

methods additionally benefit from the fact that they yield

structural information about fragment binding poses, which is

useful for confirming that two fragments indeed bind to two

adjacent sites and can be productively linked. Despite their utility,

there are significant time, labor, and materials costs associated

with experimental fragment-based drug discovery approaches.

Computational approaches to fragment-based drug discovery

hold out the promise of mitigating the costs of experimental

fragment-based drug discovery. Currently, in computational

approaches the protein is assumed to be rigid and fragments

sample the surface of the rigid protein using an energy function

that models the solvent environment as a continuum [8–12]. As a

result, these methods are limited in their ability to accurately

account for protein conformational heterogeneity and solvation

effects, contributions that are essential to compute free energies of

binding [13]. In reality, proteins can accommodate ligands by

undergoing conformational changes [14,15], and water plays an

important role in protein:ligand binding affinity [16–18]. Signif-

icant advances have been made toward incorporating protein

flexibility, for example by screening against multiple different rigid

protein conformations [19–21], and toward more accurate

modeling of solvation effects in energy functions [22]. Nonetheless,

approximations used in computational approaches to date can still

limit the accuracy of fragment placement and scoring, and,

ultimately, the determination of the most suitable fragment for a

selected region of the protein.

All-atom explicit-solvent molecular dynamics (MD) simulations

of proteins give an atomic-level-of-detail description of the motions
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of both protein and water atoms at relevant temperature and

pressure [23]. MD samples a Boltzmann distribution of thermally

accessible protein conformations, and with the ability of MD to

reach the nanosecond timescale, the sampled conformations can

include changes in sidechain dihedral angles as well as loop

motions. Furthermore, MD simulation-based methods are able to

determine the absolute binding free energy of a ligand to a protein

to, in the best cases, within RT of the experimental value [15,24–

32]. However, such MD free-energy calculations are computa-

tionally expensive, limiting MD simulations from being used

directly for high-throughput in silico screening.

Toward overcoming present limitations in fragment-based

computational drug design we describe a new method that

combines ideas from experimental fragment-based drug discovery

with all-atom explicit-solvent MD. The method (SILCS: Site

Identification by Ligand Competitive Saturation) involves com-

putationally immersing a protein in an aqueous solution

simultaneously containing different types of small molecules, with

each at a concentration of ,1 M. The protein+small molecule+-
water system is then subjected to multiple MD simulations

allowing for competitive binding of the small molecules to the

protein. Snapshots from the MD trajectories are combined to

generate 3D probability maps (FragMaps) that reveal what types of

functionalities bind most strongly to different parts of the protein

surface. Because they are generated from MD simulations, SILCS

FragMaps incorporate both protein mobility, with a Boltzmann

distribution of conformations, and atomic-level solvation effects,

thereby yielding FragMaps that represent rigorous free energy

distributions. Notably, the method requires minimal time, labor,

and materials compared to experimental approaches.

As a test case, SILCS FragMaps were generated for the BTB

domain of the BCL-6 oncoprotein [33,34]. The SILCS FragMaps,

from MD simulations initiated using the BCL-6 conformation in

the BCL-6:SMRT protein:peptide cocrystal, recapitulate the

pattern of aliphatic, aromatic, hydrogen bond donor, and

hydrogen bond acceptor interactions seen at the BCL-6:SMRT

cocrystal interface. Additionally, these same FragMaps also

recapitulate the interaction pattern seen in the BCL-6:BCOR

protein:peptide cocrystal, which has important differences arising

from sequence and structure variation in the C-terminal halves of

the SMRT and BCOR peptides. Furthermore, the simulations

sample the BCL-6 His116 sidechain conformation seen in the

BCL-6:BCOR cocrystal, a conformation that is required for

hydrogen bonding with BCOR Ser508 and significantly different

from that in the SMRT-bound BCL-6 MD starting conformation,

emphasizing the ability of the presented approach to account for

protein flexibility.

Results/Discussion

The SILCS methodology is as follows: immerse the protein in a

high-concentration (,1 M) aqueous solution of multiple small

molecules, run multiple nanosecond-length MD simulations of the

composite protein+small molecule+water system, compute prob-

ability maps for small molecule and water binding around the

protein for each simulation, and combine probability maps of the

same type from all simulations to generate a single probability map

(FragMap) of each fragment type. Once generated the FragMaps

have the potential to be used to qualitatively inform the assembly

of an inhibitor or as docking grids for high-throughput in silico

screening. Two important aspects of the methodology to consider

prior to generation and analysis of the FragMaps are the choice of

small molecules and overcoming small molecule aggregation.

Choice of small molecules
The majority of moieties on drug-like molecules that target

proteins fall into four classes: aliphatic, aromatic, hydrogen bond

donor, and hydrogen bond acceptor. This reflects the relatively

limited chemical diversity of amino acid sidechains. Salt bridges

between two amino acids are a special case of hydrogen bonding,

since the interaction is never directly between two charged heavy

atoms but between a negatively-charged oxygen and the proton on

a positively-charged nitrogen. Fragment libraries generated from

existing drugs and drug-like molecules reflect this limited diversity,

being largely composed of hydrogen bond donors consisting of

amides, hydrogen bond acceptors of carbonyls and ethers,

hydrophobic groups of small-length aliphatic chains, and aromat-

ic/cyclic groups of benzene [35].

The first goal in the choice of small molecules for use in this

initial implementation of SILCS was to minimize the set of

fragments so as to be able to maximize their individual

concentrations, which in turn maximizes binding and helps

convergence on the MD timescale. To this end, a minimalist

small-molecule set was selected that contains hydrophobic

aliphatic moieties, aromatic moieties, hydrogen bond donors,

and hydrogen bond acceptors. Propane was chosen to represent

hydrophobic aliphatic groups because the termini are small

enough to fit into cavities only large enough to accommodate a

methyl group, while the molecule itself is large enough to disrupt

the hydrogen bonding structure of water so as to induce strong

hydrophobic binding [36]. Additionally, unlike longer-chain

alkanes, propane is essentially a rigid body excepting the rotation

of the two terminal methyl groups, and thus convergence of

internal degrees of freedom is not an issue. Benzene was selected to

represent aromatic groups as it occurs in over 40% of drug-like

compounds and is four times more common than the next most-

common aromatic moiety [35]. Finally, water was used as a small

molecule that contains both hydrogen bond donating and

accepting capabilities. Water is at a concentration of 55 M in

solution and also has no internal conformational degrees of

freedom, again promoting convergence on the MD timescale.

Other small-molecule possibilities for hydrogen bond donors and

acceptors include acetone, formaldehyde, and small amides, but

these would necessarily be at much lower concentrations than

Author Summary

Fragment-based drug discovery is based on a simple yet
powerful principle: instead of trying to screen through the
vast number of possible drug-like compounds during the
drug discovery process, screen representative drug-like
fragments, which are far fewer in number. Once a suitable
fragment is discovered, it can then be built up or linked
with other fragments to give a drug-like molecule. Because
such fragments are small, even ‘‘good’’ fragments bind
weakly to their targets, therefore requiring significant time,
labor, and materials costs for experimental detection and
characterization of binding. In the present work, we
describe a computational approach to the problem of
detecting and characterizing fragment binding. Important-
ly, the method provides atomic-resolution results and also
explicitly takes into account the effect that molecular
water has on binding and the inherent flexibility of protein
targets. The methodology is demonstrated by application
to the BCL-6 protein, which is implicated in a variety of
cancers, is conceptually easy to understand, and can yield
results in a matter of days using present-day commodity
computers.
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water, hindering convergence. Additionally, they contain several

different functionalities, such as the methyl groups in acetone and

the combined hydrogen bond donor and acceptor moieties in an

amide, which can make binding analysis more difficult.

The second goal in a choice of small molecules for use in SILCS

was to minimize their sizes to maximize convergence, both by

facilitating reversible binding on the MD timescale and allowing

for fast diffusion through the bulk solvent. Even with a high-ligand

efficiency, i.e. 0.4 kcal*mol21 per heavy atom, fragments consist-

ing of 3–6 heavy atoms will have binding affinities of only 1.2 to

2.4 kcal*mol21 (100 millimolar to 10 millimolar). While such weak

binding affinity can be a liability in an experimental approach as it

may push the limits of detection, it is an asset in the SILCS

approach, allowing for ligand exchange from a binding site on the

MD timescale, facilitating the implementation of a competitive in

silico binding assay. Another benefit of molecules having only 3–6

heavy atoms is that their high diffusion rates lead to quick mixing

and rapid translation to different regions of the protein surface.

Thus, small molecules of minimal molecular size are beneficial

both because of rapid binding exchange with the protein and rapid

diffusion around the protein.

It should be emphasized that the SILCS approach is amenable

to a wide range of fragment-like small molecules. The fragment

molecules selected for the present study were chosen for

computational expediency, as proof-of-principle, and because

they represent a minimal set that includes aliphatic, aromatic,

hydrogen bond donor, and hydrogen bond acceptor moieties.

Larger fragments and/or fragments with a greater diversity of

functional groups may prove useful in developing a more fine-

grained classification of preferred functionalities beyond simply

aliphatic, aromatic, hydrogen bond donor, and hydrogen bond

acceptor. These may encompass different types of hydrogen

bonding groups such as ethers, amides, amines, esters, and

carbonyls, as well as heterocyclic aromatics and molecules with

halides, to name some possibilities.

Overcoming small-molecule aggregation
To ensure binding of small low-affinity molecules, a high

concentration (,1 M) of each small molecule is used in the

simulations. However, a simulation of a solution of 1 M propane

and 1 M benzene in water is prone to severe hydrophobic

aggregation, as seen in the intermolecular carbon…carbon (C…C)

radial distribution function g(r), which traces the relative

probability of observing this pair of atoms at a given separation

distance. The C…C g(r) has a large peak at 5 Å (Figure 1A, ‘‘no

repulsion’’), associated with the distance between carbons in two

fragments that are in direct contact. This trace slowly decays with

increasing distance, reflecting the fact that in an aggregate in

water, it is much more likely to have two hydrophobic fragments

adjacent to each other than at a larger separation. Such

aggregation drastically reduces the effective concentration of the

fragments, which in turn hampers sampling of the protein surface

and prevents SILCS FragMap convergence.

Because SILCS is a computational approach, it is possible to

modify the interactions between hydrophobic/aromatic fragments

to prevent aggregation. This can be done by introducing a

repulsive interaction energy between fragments that comes into

effect only when two fragments come closer than a given

interaction distance. This repulsive interaction energy is only

applied to selected fragment:fragment interactions, while all

fragment:water, fragment:protein, water:water, water:protein,

and protein:protein interactions remain unperturbed. For conve-

nience, the repulsive interaction is implemented using the

Lennard-Jones force field term [37] by adding an additional

massless particle to the geometric center of each benzene molecule

and the central carbon of each propane molecule. These particles

serve as interaction sites for the inter-fragment repulsive

interaction energy. Lennard-Jones parameters (e = 20.01 kcal/

mol; Rmin = 24.0 Å) combined with a switching function [38]

operating between 5 Å and 8 Å yield an energy vs. distance profile

that is purely repulsive (Figure 1B). With this additional repulsive

interaction energy in effect, even at very high concentrations the

small molecules will not aggregate. Thus, in the simulation of 1 M

propane and 1 M benzene in water, the g(r) contact peak at 5 Å

disappears, indicating the lack of direct intermolecular C…C

contacts, and the flat g(r) trace at larger distances indicates a

homogeneous distribution of molecules in solution (Figure 1A,

‘‘with repulsion’’). In principle, such a repulsive term can make

hydrophobic fragments that associate with the protein surface

compete unphysically with other directly adjacent hydrophobic

fragments. For example, the form of the repulsive potential

(Figure 1B) will prevent the formation of a stacked benzene dimer

in a binding pocket. It will, however, allow for two benzene

molecules to simultaneously bind unimpeded in two adjacent

pockets on the protein surface.

Selection of target protein
The BTB domain of the BCL-6 protein was chosen as a test

case for the SILCS method because of several favorable properties.

The first is that it has two-fold symmetry, with two identical

symmetry-related binding sites [33], allowing for measuring

convergence of fragment sampling by analyzing the two-fold

symmetry in the SILCS FragMaps. A second reason is that the

binding of native ligands to the two binding sites shows no

cooperativity [33]; thus, the binding sites are independent of each

other and the occupancy of one site will not affect the occupancy

of the other. A third reason is that two known ligands for BCL-6,

SMRT and BCOR, are peptides 17 amino-acids in length that

bind in extended conformations to the same groove over a large

contact-area [33,34], allowing for comparison of FragMaps over a

large portion of the protein. Fourth, there is thermodynamic data

available from competition assays using single-residue alanine or

glycine-substituted analogs of these two peptides for every position

in each peptide. Fifth, SMRT and BCOR have different binding

modes in the BCL-6 peptide-binding cleft and lack sequence

similarity. The different binding modes include BCL-6 sidechains

in the binding cleft assuming different conformations in the

presence of SMRT vs. BCOR. And finally, BCL-6 has clinical

importance because of its association with diffuse large B-cell

lymphoma, and competitive inhibitors that bind to the BCL-6

peptide-binding cleft may have therapeutic applications.

Convergence is achievable in the MD timescale
Convergence of the SILCS FragMaps was facilitated by the

selection of propane, benzene, and water as the ‘‘fragments,’’ by

the use of ,1 M propane and benzene concentrations, and by

combining results from 10 independent 5-ns SILCS MD

simulations (see Methods). The two-fold symmetry of the BCL-6

protein with its two symmetric binding sites and non-cooperative

binding allows for using two-fold symmetry in the FragMaps as a

measure of convergence. Analysis of the separate 5-ns simulations

shows them to yield somewhat different FragMaps that do not

have exact two-fold symmetry (not shown); however, FragMaps

generated as the ensemble average of all ten 5-ns simulations do

exhibit the expected symmetry. To visualize the extent of

convergence, slices of the aliphatic carbon atom FragMap from

propane along with the protein molecular surface were taken

perpendicular to the two-fold symmetry axis of the protein. These

Computational Fragment Binding
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slices clearly demonstrate the expected two-fold symmetry in the

FragMap, and hence convergence (Figure 2). Similarly converged

results are seen for the aromatic carbon atom FragMap generated

by mapping benzene carbon atoms and the hydrogen bond donor

and acceptor FragMaps generated by mapping water molecules

(Figures S1, S2, and S3).

To more rigorously evaluate the extent of convergence,

difference maps were obtained by subtracting FragMaps based

on half the MD simulation data from those based on the other

half. This was done for each type of FragMap by creating one map

from five 5-ns simulations, a second from the remaining five 5-ns

simulations, and then subtracting the first map from the second.

For fully converged results these difference maps would have bin

counts of zero for all volume elements (i.e. fragment atom counts

in 1 Å61 Å61 Å cubic volume elements as described in

Methods). Presented in Figure 3 are the frequency distributions

of bin counts from the FragMaps (solid red) and the difference

maps (dashed green), as well as bin count cutoff values used for the

visualization of isosurfaces (see below) for the four fragment types.

The difference map distributions are all centered around zero as

expected for random errors, while the distributions from the

FragMaps are all non-negative and have much higher bin counts.

The difference distributions, with the exception of the aliphatic

distribution (Figure 3A), go to zero below the cutoff value used for

visualization, demonstrating convergence between the two data

sets. In the case of the aliphatic difference map, the bin count at

the isovalue cutoff is only 6% of that for the actual FragMap.

These results indicate that while the FragMaps are not fully

converged, the extent of convergence is adequate to identify

regions of high probability for the different fragment types, which

Figure 1. Effect of repulsive interactions between pairs of fragment molecules. (A) Carbon…carbon (C…C) radial distribution functions g(r)
for an aqueous solution containing 1 M propane and 1 M benzene with and without a repulsive intermolecular interaction. (B) Location of repulsive
interaction energy sites on propane and benzene molecules (spheres), and the interaction energy profile between two repulsive interaction energy
sites.
doi:10.1371/journal.pcbi.1000435.g001

Figure 2. Successive slices (A–D) of the aliphatic carbon atom FragMap (green), generated by mapping propane carbon atoms, and
the crystallographic BCL-6 molecular surface (white) taken perpendicular to the two-fold symmetry axis of the protein.
doi:10.1371/journal.pcbi.1000435.g002

Computational Fragment Binding

PLoS Computational Biology | www.ploscompbiol.org 4 July 2009 | Volume 5 | Issue 7 | e1000435



is ultimately the goal of the SILCS approach. Further, the

difference map analysis shows that the different sets of SILCS

simulations are generating the same affinity pattern for fragment

molecules. Because each of the ten SILCS simulations was started

with a different random ordering of fragment molecules on a cubic

grid (see Methods), the similarities between the FragMap data

from the grouping into two sets of five simulations likely reflect

convergence as opposed to redundant unconverged results.

FragMaps identify key binding interactions
SILCS FragMaps were compared with the crystal structures of

the BCL-6:SMRT and BCL-6:BCOR complexes to validate the

method’s ability to identify known binding interactions. FragMaps

overlaid on the BCL-6:SMRT and BCL-6:BCOR structures are

shown in Figures 4 and 5: Figure 4 focuses on interactions with the

peptide backbones, while Figure 5 focuses on the C-terminal

regions of the peptides, which contain the majority of the

thermodynamically important interactions between the peptides

and BCL-6 [34]. FragMap isosurfaces for hydrogen bond donors

are in blue, hydrogen bond acceptors in red, aliphatic carbons in

green, and aromatic carbons in purple, with the sites of discussion

emphasized using arrows of the same color.

BCL-6 binding interactions conserved between the non-

homologous SMRT and BCOR peptides are exclusively hydrogen

bonding interactions with the peptide backbones [34], and the

hydrogen bond donor and acceptor FragMaps show these

conserved interactions. Starting from the N-termini of the two

peptides, the backbones of SMRT Ala1416 and Val1418, and

BCOR Ser499 and Ile501 act as hydrogen bond acceptors, and of

SMRT Val1418 and Glu1420, and BCOR Ile501 and Ser503 as

donors, all of which are recapitulated by high-probability regions

in the corresponding FragMaps (Figure 4A). Toward the middle of

the peptides, high-probability regions overlap with SMRT

Glu1420 and BCOR Ser503 as hydrogen bond acceptors to

BCL-6, and SMRT Ser1424 and BCOR Ser507 as donors

(Figure 4B). Finally, at the C-termini, hydrogen-bond acceptor

FragMap overlap is observed with SMRT His1426 and Pro1429

as well as BCOR Trp509 and Pro512, while hydrogen-bond

donor FragMap overlap is seen for SMRT Ile1428 and BCOR

Val511 (Figure 4C). The only peptide backbone hydrogen bonding

interactions for SMRT not detected by SILCS are at the ends of

the peptide, namely Ala1416 as a hydrogen bond donor and

Ile1428 as a hydrogen bond acceptor, which may be explained by

the high crystallographic temperature factors of these residues

[33]. In the case of the BCOR peptide, only the Ser508 backbone

is not detected as a strong hydrogen bond donor. Thus, in eighteen

out of twenty-one cases, high probability regions in SILCS

FragMaps recapitulate the location of both SMRT and BCOR

peptide backbone hydrogen bonds to BCL-6.

More interesting than the conserved backbone hydrogen bonds

are the non-conserved interactions involving sidechains from the

C-terminal ends of the two peptides. These C-terminal amino

acids have large contact areas and buried surfaces, correlating with

these residues contributing most strongly to the peptide binding

affinities, as measured by competitive fluorescence polarization

titrations involving SMRT or BCOR peptides that have single

Figure 3. Frequency histograms of FragMap (solid red) and difference map (dashed green) bin counts for (A) aliphatic carbons, (B)
aromatic carbons, (C) hydrogen bond donors, and (D) hydrogen bond acceptors. Solid black vertical lines are located at the isocontour
value used for visualizing FragMaps (Figures 4–6).
doi:10.1371/journal.pcbi.1000435.g003
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amino acid substitutions to either alanine for non-alanine residues

or glycine for alanine residues [34]. To be considered useful, the

SILCS method should be capable of recapitulating these

important interactions.

The SILCS FragMaps capture every one of the thermodynam-

ically important C-terminal sidechain interactions of the SMRT

peptide with BCL-6. In the SMRT peptide, Arg1423, Ser1424,

Ile1425, Asp1427, Ile1428, and Pro1429 in the C-terminal half

make large contributions to the binding affinity [34]. Analysis of

the crystal structures shows that the sidechains of Arg1423,

Ser1424, and Asp1427 all form hydrogen bonds to BCL-6, while

both the Ile1425 and Ile1428 aliphatic sidechains are buried in

hydrophobic pockets. High-probability regions in the hydrogen-

bond donor FragMap overlap with the polar hydrogens in the

Arg1423 and Ser1424 sidechains, and high-probability regions in

the hydrogen-bond acceptor FragMap overlap with the oxygens in

the Ser1424 and Asp1427 sidechains (Figure 5A). High-probability

regions in the aliphatic carbon FragMap encompass both the

Ile1425 and Ile1428 sidechains (Figure 5A). Interestingly, only the

Ile1428 sidechain and not the Ile1425 sidechain is also overlapped

by a high-density region in the aromatic carbon FragMap. The

lack of observable aromatic carbon FragMap density coincident

with the Ile1425 sidechain occurs on both sides of the BCL-6

protein, and decreasing the isovalue threshold by half continues to

yield no observable density on one side and only two small points of

observable density on the other side that are overwhelmingly

enveloped by the aliphatic carbon FragMap contour. This suggests

that the Ile1428 pocket can accommodate both aliphatic and

aromatic carbons, while the Ile1425 pocket will preferentially bind

aliphatic carbons. Experimental evidence to this effect exists in the

form of a crystal structure of BCL-6 with a small-molecule inhibitor,

in which an aromatic moiety binds in the Ile1428 pocket (G. Privé,

personal communication). Such differentiation emphasizes the ability

of the SILCS method to account for the subtle energetic contributions

that dictate the binding of different classes of hydrophobic moieties.

Pro1429 is interesting in that it is the only amino acid in the C-

terminal region of the SMRT peptide that makes a large

experimental thermodynamic contribution to binding yet whose

sidechain is not involved in an interaction with the BCL-6 protein.

Rather, its backbone carbonyl acts as a hydrogen bond acceptor,

and this interaction is indeed seen in the corresponding FragMap

(Figures 4C and 5A). This result indicates that Pro1429Ala

mutation likely has a strong affect on the SMRT binding affinity

due to an increase in conformational entropy and the fact that

proline occupies the extended region of w/y space while alanine

preferentially occupies the helical region [39].

Figure 4. Hydrogen bond donor (blue mesh) and hydrogen bond acceptor (red mesh) SILCS FragMaps isosurfaces overlapping with
the (A) N-terminal, (B) central, and (C) C-terminal residues in the SMRT and BCOR peptides. SMRT peptide atoms are represented as balls-
and-sticks and BCOR atoms as tubes. The BCL-6 molecular surface from the BCL-6:SMRT complex is also shown, and the residue/FragMap overlaps are
labeled.
doi:10.1371/journal.pcbi.1000435.g004

Figure 5. SILCS FragMaps for BCL-6 overlapping with the C-terminal residues of the SMRT and BCOR peptides. The molecular surface
of the BCL-6 protein from the BCL-6:SMRT cocrystal is shown in white. High-probability isosurfaces from the FragMaps are represented as meshes,
with the aliphatic carbon FragMap in green, the aromatic carbon in purple, the hydrogen bond donor in blue, and hydrogen bond acceptor in red.
Thermodynamically important residues in (A) the SMRT peptide and (B) the BCOR peptide are shown as sticks, and the residue/FragMap overlaps are
labeled.
doi:10.1371/journal.pcbi.1000435.g005
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The SILCS FragMaps also capture the thermodynamically

important interactions of the BCOR peptide C-terminal residues

508–512 (Figure 5B). These include sidechain interactions for

Ser508, Trp509 and Val511. Surprisingly, no overlap is seen for

the Val510 sidechain with a high-density region in either the

aliphatic or aromatic FragMaps. This may have an explanation

similar to that for SMRT Pro1429, in that the Val510Ala

mutation may cause a decrease in binding affinity due to

replacement of an amino acid that prefers an extended

conformation with the helix-promoting alanine. Finally, as with

the homologous SMRT Pro1429, the BCOR Pro512 backbone

overlaps with a high-density region in the hydrogen bond acceptor

FragMap while no sidechain overlap is seen (Figures 4C and 5B).

SILCS captures protein flexibility
Because SILCS uses all-atom explicit-solvent MD simulations,

protein flexibility is naturally included. As observed crystallo-

graphically, there are important differences in the conformations

of BCL-6 sidechains in the peptide-binding groove between the

BCL6 apo, BCL-6:SMRT and BCL-6:BCOR crystal structures.

For example, BCL-6 Arg24 sidechain dihedral angles have

significantly different values in crystal structures of the unliganded

protein, the BCL-6:SMRT complex, and the BCL-6:BCOR

complex, while the BCL-6 His116 sidechain undergoes a dramatic

rearrangement between the SMRT and BCOR complexes.

SILCS simulations seeded with a single BCL-6 structure capture

this heterogeneity in both Arg24 (Figure S4) and His116, and can

therefore inform the design of inhibitors targeting such flexible

binding sites.

The SILCS MD behavior of the BCL-6 His116 sidechain is

especially relevant because of the large crystallographically-

determined conformational change required in this sidechain for

BCL-6 to accommodate both the SMRT and the BCOR peptides.

SILCS MD samples both the His116 sidechain conformation

observed in the BCL-6:SMRT crystal structure used to initiate all

the SILCS simulations, and the very different conformation in the

BCL-6:BCOR crystal structure (Figure 6). In the SILCS MD, the

His116 sidechain reversibly shifts between the initial, BCL-

6:SMRT conformation (Figure 6A, purple) and a second

conformation. In this second conformation, His116 forms a

hydrogen-bonding complex with a water molecule that acts as a

hydrogen bond donor to the sidechain and as an acceptor to the

His116 backbone amide NH group (Figure 6A, colored by atom

type), a complex not possible in the initial conformation due to

the location of the sidechain. Furthermore, this MD second

conformation is the same as in the BCL-6:BCOR crystal

structure and enables hydrogen bonding between BCL-6

His116 and the BCOR Ser508 sidechain hydroxyl in the BCL-

6:BCOR crystal structure (Figure 6B). The Ser508 hydroxyl

donates a hydrogen bond to the His116 sidechain and accepts a

hydrogen bond from the His116 backbone amide NH group

(Figure 6B) in the same manner as the water molecule in the

simulation (Figure 6A). Importantly, the hydrogen bond donor

and acceptor FragMaps show that these are high-probability

(favorable free energy) interactions. These results demonstrate

the ability of SILCS to include protein flexibility and the ability

of the method to identify locations of favorable interaction sites

on the protein surface that arise from protein flexibility. The

conformational changes that SILCS can take into account are,

naturally, related to the timescales of the MD simulations and of

the conformational changes themselves. The present results

suggest that readily-accessible timescales can account for the

conformational heterogeneity in biologically important surface-

exposed sidechains, although in situations with, for example,

strong sidechain hydrogen bonding or large structural changes

like loop opening, this may not be the case.

Conclusions
Described is a new computational method that combines ideas

from experimental fragment-based drug discovery with all-atom

explicit-solvent molecular dynamics. The SILCS (Site Identifica-

tion by Ligand Competitive Saturation) method, by using all-atom

explicit solvent molecular dynamics, incorporates atomic-level

solvation effects and protein mobility. The resulting 3D free

energy-based probability distributions (FragMaps) suggest the

optimal placement of aliphatic hydrophobic, aromatic, hydro-

gen-bond donor, and hydrogen-bond acceptor functionalities in a

binding pocket. As an example, SILCS FragMaps computed for

the BCL-6 oncoprotein do an excellent job of reproducing the

binding interactions of the non-homologous SMRT and BCOR

peptides with the BCL-6 protein and include biologically relevant

conformational changes in the binding pocket.

Figure 6. Conformations of BCL-6 His116 in the BCL-6:SMRT cocrystal, sampled during SILCS MD, and in the BCL-6:BCOR cocrystal.
(A) The BCL-6:SMRT cocrystal His116 conformation used to seed the simulations (purple) overlaid with a SILCS MD snapshot of the His116
conformation having an interacting water molecule (colored by atom type). (B) The BCL-6:SMRT cocrystal His116 conformation (purple) overlaid with
the BCL-6:BCOR cocrystal His116 conformation and BCOR Ser508 (colored by atom type). The hydrogen bond donor FragMap is shown as a blue
isocontour mesh, the hydrogen bond acceptor FragMap as a red isocontour mesh, and the helix containing His116 is represented as a white ribbon.
doi:10.1371/journal.pcbi.1000435.g006
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SILCS FragMaps, when visualized as isosurfaces in conjunction

with a protein (e.g. Figures 4–6), may potentially be used to

guide the development of inhibitors at a particular site on the

protein surface. The FragMaps contain information about

protein flexibility and atomically-detailed solvation effects as

they impact fragment binding. Additionally, the relative

importance of interactions is represented by the values of the

histogram counts in the 3D FragMap histograms, thus inhibitors

can be optimally designed by targeting overlap with high-

probability regions in the FragMaps. This can be done in an

interactive, qualitative fashion, for example by informing the

extension of small-molecule binders with known binding poses

into larger, higher-affinity molecules that encompass nearby

high-probability regions. Alternatively, this can be done in an

automated, quantitative manner by taking the natural logarithm

of the probabilities and multiplying by –RT; the resultant free-

energy maps can be used as docking grids for high-throughput in

silico docking of drug-like compound libraries, with an additional

map of the protein atoms incorporated into a penalty function to

account for steric clash between docked compounds and the

protein. With this latter approach, some care must be taken

regarding the direct interpretation of FragMaps in terms of free

energies due to alterations to the chemical potential of bulk

water, which is used to generate hydrogen bond donor and

acceptor maps, arising from the high concentration of fragments.

Additionally, some care may be required to delineate mutually-

exclusive high-probability regions arising from protein confor-

mational heterogeneity. Nonetheless, the use of SILCS free-

energy FragMaps as docking grids has the potential to be a

significant improvement over current high-throughput in silico

methods, which are limited in their descriptions of protein

flexibility and solvation [13].

Finally, an important part of the SILCS method is its

computational feasibility. Each 5-ns SILCS simulation of BCL-6

took less than three days on a single 264-core node of a

commodity computing cluster, and because each of the ten

simulations was independent, they were all run simultaneously to

yield converged FragMaps in under three days. The ability to

achieve converged FragMaps probability maps in such a short

time is a very important result, since MD simulations are often

limited by the computational cost for simulations beyond the

nanosecond regime, which in turn limits their utility in computer-

aided drug discovery [13].

Methods

SILCS MD simulations
The experimental BCL-6 protein conformation from the BCL-

6:SMRT complex [33] [PDB ID 1R2B] was used to seed all

SILCS MD simulations. The Reduce software [40] was used to

place missing hydrogen positions and to choose optimal Asn and

Gln sidechain amide and His sidechain ring orientations. Propane

and benzene molecules were placed on a square grid, with the

identity of the molecule at each grid point randomly determined.

Ten such grids were generated with the grid spacing selected to

yield a concentration of ,1 M propane and ,1 M benzene when

combined with a box of water molecules at the experimental

density of water. Ten protein+small molecule+water systems were

generated by overlaying the coordinates of the BCL-6 protein and

water molecules from the BCL-6:SMRT co-crystal structure with

each of the ten different solutions, removing all water, propane,

and benzene molecules that overlapped the protein, and replacing

two random water molecules with chloride ions to give a net

neutral system charge. The final systems were rectangular boxes of

size 72658643 Å to accommodate the protein with maximum

dimensions of 64648635 Å.

Harmonic positional restraints with a force constant of

1 kcal*mol21*Å22 were placed on all protein atoms and the

system was minimized for 500 steps with the steepest descent

algorithm [41] under periodic boundary conditions [37]. Molec-

ular dynamics simulations were performed on each minimized

system using the ‘‘leap frog’’ version of the Verlet integrator [37]

with a 2-fs timestep to propagate the system. The SHAKE

algorithm [42] was applied to constrain bonds to hydrogen atoms

to their equilibrium lengths and maintain rigid water geometries,

long-range electrostatic interactions were handled with the

particle-mesh Ewald method [43] with a real-space cutoff of

8 Å, a switching function [38] was applied to Lennard-Jones

interactions in the range of 5 to 8 Å, and a long-range isotropic

correction [37] was applied to the pressure for Lennard-Jones

interactions beyond the 8 Å cutoff length. With the positional

restraints still in place, the system was heated to 298 K over 20 ps

by periodic reassignment of velocities [44], followed by 20 ps of

equilibration at 298 K, also using velocity reassignment. After the

heating and equilibration periods, the positional restraints were

replaced by restraints on only protein backbone Ca positions with

a very weak force constant of 0.01 kcal*mol21*Å22 so as to

prevent rotation of the protein in the rectangular simulation box.

Each system was subsequently simulated for 5 ns at 298 K and 1

atm, with the Nosé-Hoover thermostat [45,46] and the Langevin

piston barostat [47], for a total of 50 ns of simulation time. All

simulations were done with the CHARMM molecular simulation

software [48], the CHARMM protein force field [49] with CMAP

backbone correction [50], and the TIP3P water model [51]

modified for the CHARMM force field [52].

FragMap construction
FragMaps were prepared for each SILCS simulation by binning

atoms from SILCS MD snapshots taken at 2-ps intervals into

1 Å61 Å61 Å cubic volume elements of a grid spanning the

entire system. For the aliphatic and aromatic carbon FragMaps,

carbon atoms for propane and benzene molecules, respectively,

were binned if they were within 5 Å of the protein. For the

hydrogen bond donor and acceptor FragMaps, water hydrogen

and oxygen atoms, respectively, were binned if they were within

2.5 Å of the protein. For each type of FragMap, the respective

FragMaps from each of the ten simulations were added together to

create a single FragMap. A single isocontour value resulting in

optimal visualization was empirically chosen for each FragMap

type, and this value was used to generate all isocontour molecular

graphics for that FragMap type. The ratio of the isocontour value

to the average cubic volume element occupancy in an equilibrated

system consisting of only propane, benzene, and water molecules

was 9.8 for propane carbons, 9.8 for benzene carbons, 1.3 for

water hydrogens, and 1.1 for water oxygens. Visualization of

FragMaps and preparation of molecular graphics were done with

VMD [53].

Supporting Information

Figure S1 Successive slices of the aromatic carbon atom

FragMap, generated by mapping benzene carbon atoms, and

the BCL-6 molecular surface taken perpendicular to the two-fold

symmetry axis of the protein. A through D are the same slices as in

Figure 2. E is an additional successive slice.

Found at: doi:10.1371/journal.pcbi.1000435.s001 (1.44 MB TIF)

Figure S2 Successive slices of the hydrogen bond donor

FragMap, generated by mapping water hydrogen atoms, and the
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BCL-6 molecular surface taken perpendicular to the two-fold

symmetry axis of the protein. A through D are the same slices as in

Figure 2. E is an additional successive slice.

Found at: doi:10.1371/journal.pcbi.1000435.s002 (1.49 MB TIF)

Figure S3 Successive slices of the hydrogen bond acceptor

FragMap, generated by mapping water oxygen atoms, and the

BCL-6 molecular surface taken perpendicular to the two-fold

symmetry axis of the protein. A through D are the same slices as in

Figure 2. E is an additional successive slice.

Found at: doi:10.1371/journal.pcbi.1000435.s003 (1.52 MB TIF)

Figure S4 Arg24 sidechain (A) x1, (B) x2, (C) x3, and (D) x4

dihedral distributions from the SILCS MD simulations. The

starting dihedral values from BCL-6 in the BCL-6:SMRT

complex [PDB ID 1R2B] are shown as solid lines, and the

dihedral values in unliganded BCL-6 [PDB ID 1R28, 1R29] and

in the BCL-6:BCOR [PDB ID 3BIM] complex are shown as

dashed lines.

Found at: doi:10.1371/journal.pcbi.1000435.s004 (0.73 MB TIF)
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