# The Interpretation of Protein Structures: Estimation of Static Accessibility

## B. LEE AND F. M. RICHARDS

Department of Molecular Biophysics and Biochemistry, Yale University New Haven, Conn., U.S.A.

(Received 14 September 1970)

A program is described for drawing the van der Waal's surface of a protein molecule. An extension of the program permits the accessibility of atoms, or groups of atoms, to solvent or solute molecules of specified size to be quantitatively assessed. As defined in this study, the accessibility is proportional to surface area. The accessibility of all atoms in the twenty common amino acids in model tripeptides of the type Ala-X-Ala are given for defined conformation. The accessibilities are also given for all atoms in ribonuclease-S, lysozyme and myogoblin. Internal cavities are defined and discussed. Various summaries of these data are provided. Forty to fifty per cent of the surface area of each protein is occupied by non-polar atoms. The actual numerical results are sensitive to the values chosen for the van der Waal's radii of the various groups. Since there is uncertainty over the correct values for these radii, the derived numbers should only be used as a qualitative guide at this stage.

The average change in accessibility for the atoms of all three proteins in going from a hypothetical extended chain to the folded conformation of the native protein is about a factor of 3. This number applies to both polar (nitrogen and oxygen) and non-polar (carbon and sulfur) atoms considered separately. The larger non-polar amino acids tend to be more "buried" in the native form of all three proteins. However, for all classes and for residues within a given class the accessibility changes on folding tend to be highly variable.

## 1. Introduction

The successful elucidation of the structure of a protein by single-crystal diffraction procedures provides a list of atomic co-ordinates whose reliability will vary in different parts of the molecule. The presentation and analysis of such three-dimensional information in terms of chemical detail or biological function is only just beginning. The most successful general starting point is an accurate physical model based on the Kendrew skeleton parts. However, the details of side-chain packing are often not easy to comprehend in skeleton models without very detailed and lengthy examination. Physical space-filling models are another form of presentation, but they are very difficult to construct accurately when structures with hundreds of atoms are involved, and the interior of the macromolecule is usually invisible because of the opaque parts. In this report we suggest that a computer-produced space-filling model prepared on a stack of clear plastic sheets may be a useful presentation complementary to the various physical models. In the course of working with this graphics program, it became clear that certain useful summary information could be obtained easily. The topology of the surface of a protein is intimately related to its function; parts of the surface are directly involved in interactions with other molecules; the solventprotein interface is almost certainly related to the structure of the native molecule; and the chemical reactivity of the various functional groups will depend on their relation to this interface. An initial detailed description of such an irregular surface might be described by a list of the accessibility of each atom or group of atoms in the structure to a solvent (or solute) molecule of defined size. Such accessibility estimates can be derived directly from the graphics program. Since the calculations are based on the co-ordinate list for the protein which at present reflects no information on vibrations or flexibility, the numbers derived are static accessibilities. It is hoped that such numbers will be more directly useful for the interpretation of chemical data than the co-ordinates themselves.

## 2. Procedures

## (a) The drawing program

Van der Waal's radii are assigned to each atom or group of atoms. The set of radii chosen is that given by Bondi (1964) and quoted by Scott & Scheraga (1966) and by Ramachandran & Sasisekharan (1968), Table 1. Hydrogen atoms are not considered individually but are included where appropriate in the estimate for the group radius. This approximation is warranted by the present rather low accuracy of the X-ray co-ordinates, and the general nature of the information to be derived in this work.

The structure is thus represented by a set of interlocking spheres of appropriate van der Waal's radii. The continuous structure is sectioned by a set of parallel planes with a predetermined spacing. The intersection of each sphere with a given plane appears as a circle. The overlapping arcs of circles representing atoms of the same molecule are eliminated. The drawing in any one plane thus becomes the trace of the envelope of the van der Waal's surface for the molecule. Overlapping circles representing atoms from different molecules are not eliminated in order to distinguish one molecule from another and to facilitate easy recognition of serious overlap between symmetry-related neighboring molecules. The polar atoms, oxygen and nitrogen, are dotted and labeled, the non-polar atoms, carbon and sulfur, appear as solid lines. The sequence number of a given residue is written at the center of both the  $\alpha$ - and  $\beta$ - carbon atoms. The skeleton covalent bonds and hydrogen bonds are shown between atom centers to assist viewing. A picture of some stacked sections of ribonuclease-S (Wyckoff *et al.*, 1970) is shown in Plate I, where various types of interactions and packing can be seen.

| TABLE . | L |
|---------|---|
|---------|---|

| Assumed | van der | Waal's | radii | from | Bondi | (1964) |
|---------|---------|--------|-------|------|-------|--------|
|---------|---------|--------|-------|------|-------|--------|

| Main-chain α-carbon atom           | 1·70 Å   |
|------------------------------------|----------|
| Main-chain carbonyl oxygen atom    | 1·52 Å   |
| Main-chain amide NH group          | 1·55 Å   |
| Main-chain carbonyl carbon atom    | 1·80 Å   |
| Main-chain carbonyl carbon atom    | 1·80 A   |
| All side-chain atoms and groups    | 1·80 Å   |
| Iron atom in the heme of myoglobin | 0·64 Å † |

<sup>†</sup> This is the value for the crystal radii of Fe<sup>3+</sup> given by Pauling (1960).

380



 $P_{LATE}$  I. Some stacked sections of the van der Waal's contact drawing for pancreatic ribonuclease-S. The central molecule is shown in black while parts of the symmetry-related molecules appear in a lighter shade of gray. The construction and labelling of these drawings are discussed in the text.

[facing p. 380

#### (b) Estimation of static accessibility

An atom, or group of atoms, is defined as accessible if a solvent molecule of specified size can be brought into van der Waal's contact. In this study the solvent molecule has been assumed to be a sphere of radius 1.4 Å. For calculation a sphere is centered at each atomic position in the co-ordinate list and is assigned a radius equal to the sum of that of the atom and that of the solvent molecule. The drawing program is now entered (with or without the graphics output). The surface computed will be the locus of the center of a solvent molecule as it rolls along the protein making the maximum permitted contact. If any part of an arc around a given protein atom is "drawn" then that atom is accessibility will be proportional to the summed length of all arcs drawn for that atom.

The terms "accessible surface area" and "accessibility" are used in subsequent sections of this paper and defined as follows. Accessible surface area, A, of an atom is the area on the surface of a sphere of radius R, on each point of which the center of a solvent molecule can be placed in contact with this atom without penetrating any other atoms of the molecule. The radius R is given by the sum of the van der Waal's radius of the atom and the chosen radius of the solvent molecule. An approximation to this area is computed by this program using the formula:

accessible surface area = 
$$A = \sum \left( \frac{R}{\sqrt{R^2 - Z_i^2}} \right) \cdot D \cdot L_i$$
, (1)

$$D = \Delta Z/2 + \Delta' Z \tag{2}$$

where  $L_i$  is the length of the arc drawn on a given section *i*,  $Z_i$  is the perpendicular distance from the center of the sphere to the section *i*,  $\Delta Z$  is the spacing between the sections, and  $\Delta' Z$  is  $\Delta Z/2$  or  $R \cdot Z_i$ , whichever is smaller. Summation is over all of the arcs drawn for the given atom. The accessibility is defined simply by the accessible surface area divided by  $4\pi R^2$  and multiplied by 100.

Accessibility = 
$$100 A/4\pi R^2$$
. (3)

It must be emphasized that the number really refers to *static* accessibility or *static* accessibile surface area since no account has been taken of potential flexibility or movement of groups in the structure.

## (c) Identification of cavities

Cavities inside a protein molecule that are large enough to accommodate at least one solvent molecule can be identified with the computer programs developed. This is done by isolating all the accessibility contours with concave curvature on each section and eliminating those that have a channel leading from the inside of this concave contour to the outside of the molecule. The elimination is done with the aid of a stack of the graphics output of accessibility contours recorded on films of the cathode ray tube display. An example of a section that shows such a cavity is given in Figure 1.

The "volume" of a cavity was calculated by computing the area of the region inside of the cavity contour, multiplying it by the spacing between the sections, and summing the result over all the planes that show the cavity. This number represents that volume of space which can be occupied by the center of a solvent molecule. A cavity, large enough to accommodate one solvent molecule but not large to leave any room for the molecule to move about, has a volume of just zero by this definition.

-12.5



RNase-S set 4

FIG. 1. Superposition of van der Waal's contours and accessibility contours of a section of the ribonuclease-S molecule. The arrow indicates the cavity inside the molecule large enough to accommodate a solvent molecule of radius 1.4 Å.

## 3. Results of Static Accessibility Calculations

## (a) Model systems

The computer programs described were used to compute the accessibilities of a number of model systems prior to their application to macromolecules. The model systems were generated using standard bond lengths and angles, except for the side chains of proline, histidine and tryptophan for which values reported in the literature from the crystallographic studies were used (Leung & Marsh, 1958; Donohue & Caron, 1964; Pasternak, 1956).

The first model systems were tripeptides of the form Gly-X-Gly and Ala-X-Ala, where X is the residue whose accessibility was to be computed. The main-chain dihedral angles were chosen to be those of the extended  $\beta$  conformation of silk ( $\phi = -140^{\circ}$ ,  $\psi = 135^{\circ}$ )† except when X was a proline residue, in which case the conformation of poly-L-proline II ( $\phi = -77.2^{\circ}, \psi = 145.9^{\circ}$ ) was adopted. Two sets of dihedral angles for side chains were chosen. For the first set (the  $\beta$ , trans set) all the variable dihedral angles were chosen to be 180° or trans. Whenever there was a branch, the first branch

 $<sup>\</sup>dagger$  For the conventions of dihedral angles, see the editors appendix to the article by Ramachandran & Sasisekharan (1968), and the statement by IUPAC-IUB Commission on Biochemical Nomenclature on Description of Conformation of Polypeptide Chains, *J Mol. Biol.* 55, 299. According to this convention, a dihedral angle of zero corresponds to the *cis*-conformation for both the main chain and side chains. This convention is used throughout this paper.

| GL Y | CA N     | C 0      |                                                               |
|------|----------|----------|---------------------------------------------------------------|
| 1    | 21.7 7.7 | 7•5 35•1 |                                                               |
| AL A | CA N     | C D      | СВ                                                            |
| L    | 3.9 5.7  | 3•2 32•6 | 48.2 49.2                                                     |
| VAL  | CA N     | C 0      | CB CG1 CG2                                                    |
| 1    | 2.2 5.5  | 2.2 32.3 | 6.5 38.2 37.8 27.5                                            |
| LEU  | CA N     | C 0      | CB CG CD1 CD2                                                 |
| 1    | 2.3 5.7  | 2.0 29.2 | 16.4 10.0 50.5 19.3 24.0                                      |
| 2    | 0.8 5.6  | 5.1 26.5 | 16.6 4.2 34.1 50.6 26.4                                       |
| IL E | CA N     | C 0      | CB CG2 CG1 CD                                                 |
| 1    | 2.3 2.4  | 2•2 27•1 | 5.9 33.7 15.1 50.2 24.2                                       |
| 2    | 2.9 1.6  | 3•4 25•1 | 7.7 32.9 17.4 50.1 27.0                                       |
| P3.0 | CA N     | C 0      | CB CG CD                                                      |
| 1    | 5∎7 ପ∎0  | C.5 22.8 | 25.2 32.8 19.8 25.9                                           |
| CY S | CA N     | C 0      | CB SG SD                                                      |
| 1    | 1.6 5.7  | 2.1 32.4 | 18.4 18.9 15.9 17.7                                           |
| 2    | 2.3 5.5  | 6.4 26.5 | 20.8 20.0 22.1 20.9                                           |
| МЕТ  | CA N     | c n      | CB CG SD CE                                                   |
| 1    | 2.3 5.7  | 2.2 32.3 | 17.9 11.4 31.8 58.5 29.9                                      |
| PH E | CA N     | ( 0      | CB CG CD1 CE1 CZ CE2 CD2                                      |
| 1    | 1.4 5.7  | 2.0 32.3 | 18.3 3.4 24.7 28.9 29.1 12.4 6.6 17.6                         |
| 2    | 1.4 5.6  | 3.7 26.5 | 18.8 2.5 20.4 26.4 25.6 23.0 14.7 15.3                        |
| TR Y | CA N     | C 0      | CB CG CDJ NE CEI CZI CH CZ2 CF2 CD2                           |
| 1    | 1.6 5.9  | 2.1 32.8 | 15.2 3.5 7.2 19.4 3.8 26.4 28.5 28.2 23.4 4.3 15.6 19.4 16.0  |
| 2    | 2.4 5.3  | 5.6 26.5 | 16.7 2.4 10.8 25.2 4.9 26.9 26.7 27.9 23.1 4.9 16.0 25.2 17.0 |
| SE R | CA N     | C U      | CB OH                                                         |
| 1    | 2∙3 5•7  | 2•2 32•3 | 21.4 43.9 21.4 43.9 32.6                                      |
| TH R | CA N     | C 0      | C8 CG 0H                                                      |
| J    | 2+2 5+5  | 2.2 32.3 | 6.4 38.3 36.5 22.3 36.5 27.1                                  |
| TYR  | CA N     | C 0      | CB CG CD1 CF1 CZ CE2 CD2 OH                                   |
| 1    | 1.4 5.7  | 2.0 32.3 | 18.3 3.4 24.7 24.7 3.9 8.5 6.6 51.6 12.9 51.6 17.7            |
| 2    | 1.4 5.6  | 3.1 26.5 | 18.8 2.5⊱20.4 22.1 2.1 16.0 14.7 48.6 13.8 48.6 18.1          |
| AS P | CA N     | C 0      | CB CG ND1 002                                                 |
| 1    | 1.4 5.7  | 2.0 32.3 | 17.9 2.9 50.7 19.9 10.4 35.3 22.8                             |
| 2    | 3.0 1.0  | 0.9 22.9 | 22.0 1.9 39.4 39.7 12.0 39.5 25.7                             |
| GLU  | CA N     | C 0      | CB CG CD 0E1 0E2                                              |
| 1    | 2.3 5.7  | 2.2 32.3 | 9.9 11.4 3.7 50.9 42.6 8.3 46.8 23.7                          |
| 2    | 2.9 5.4  | 6.4 26.5 | 12.5 10.9 3.7 50.5 42.6 9.1 46.5 24.1                         |
| нт s | CA N     | C 0      | CB CG NO CE NE CO                                             |
| 1    | 1.7 5.8  | 2.1 33.4 | 18.2 3.5 27.6 30.9 24.8 7.6 15.0 26.2 18.8                    |
| 2    | 7.6 2.1  | 0.9 22.6 | 21.6 2.1 24.2 39.9 31.2 16.0 17.6 27.7 21.0                   |
| LY S | CA N     | C 0      | CB CG CD CE NZ                                                |
| 1    | 2.3 5.7  | 2.2 32.3 | 16.8 19.5 21.7 26.0 55.8 18.7 55.8 26.1                       |
| AR G | CA N     | C 0      | CB CG CO NE CZ NT1 NT2                                        |
| 1    | 2.3 5.1  | 2.2 32.3 | 16.8 10.5 17.8 16.9 3.6 51.3 45.5 12.2 37.9 23.2              |

 TABLE 2

 Static accessibility of amino-acid residues, X, in model tripeptides Ala-X-Ala

The first row for each amino acid is for the  $\beta$ , *trans* set of conformations. The second row, when given, is for the  $\beta$ , alternate set (see text). The last column of each row gives the average over the side-chain atoms. For polar residues, separate averages over the side-chain non-polar and polar atoms are given in the third and the second from the last columns, respectively. The seventh amino acid in the Table is for cystine/2 residue; the atom S $\delta$  is included in computing the average given in the last column.

was used for the criterion for *trans* except for tryptophan, for which the second branch (the branch of the atom C\delta2) was used. For the second set (the  $\beta$  alternate set), the side-chain dihedral angles were altered for some of the amino acids as follows—cystine:  $\chi^1 = -60^\circ, \chi^2 = -90^\circ, \chi^3 = -90^\circ$ ; leucine:  $\chi^1 = 180^\circ, \chi^{2,1} = 60^\circ, \chi^{2,2} = 180^\circ$ : isoleucine  $\chi^{1,1} = 60^\circ, \chi^{1,2} = -60^\circ, \chi^2 = 180^\circ$ ; aspartate:  $\chi^1 = 60^\circ, \chi^{2,1} = 90^\circ$ ; glutamate;  $\chi^1 = -60^\circ, \chi^2 = 180^\circ, \chi^{3,1} = 0^\circ$ ; histidine:  $\chi^1 = 72 \cdot 0^\circ, \chi^{2,1} = -120 \cdot 5^\circ$  (with respect to N $\delta$ ); phenylalanine and tyrosine:  $\chi^1 = 180^\circ, \chi^{2,1} = 90^\circ$ ; tryptophan:  $\chi^1 = -66 \cdot 84^\circ, \chi^{2,1} = 60 \cdot 59^\circ$  (with respect to C $\delta$ 1). The side-chain conformations cited above for histidine and tryptophan are those observed in the crystal structures (*loc. cit.*).

The results of calculations for the  $\alpha$ -carbon and the side-chain atoms of the residue X in Gly-X-Gly were essentially identical to those for Ala-X-Ala. For other mainchain atoms of the central residue, the accessibilities tended to increase by varying amounts that were less than 3 when glycines were used in place of alanines to surround the residue, The accessibilities of the atoms of residue X in Ala-X-Ala are listed in Table 2.

In order to investigate the effect of variations in the main-chain conformation, the model system Gly-Ala-Gly was constructed in nine different conformations. The mainchain dihedral angles and the accessibilities in each of these conformations are listed in Table 3.

TABLE 3

Static accessibility of the alanyl residue in Gly-Ala-Gly in different conformations

| <b>¢</b> † | ψ†   | Cα          | N           | С           | 0            | Сβ           | Comment                        |
|------------|------|-------------|-------------|-------------|--------------|--------------|--------------------------------|
| -140       | 135  | 3.2         | 6.3         | <b>4</b> ·9 | 34.2         | 47.9         | β-sheet of silk                |
| -120       | 160  | $3 \cdot 1$ | 5.5         | 4.4         | $34 \cdot 1$ | 47.0         | •                              |
| -100       | 135  | $3 \cdot 6$ | $6 \cdot 9$ | 1.8         | 31.7         | 49.8         |                                |
| - 70       | 150  | 6.5         | 8.8         | $0 \cdot 2$ | $26 \cdot 1$ | 47.9         | near collagen fold             |
| -120       | 80   | 4.0         | 6.7         | $4 \cdot 2$ | 31.7         | 48.4         | 0                              |
| -100       | 0    | 4.9         | $1 \cdot 1$ | $3 \cdot 4$ | 35.0         | 51.0         |                                |
| - 50       | - 26 | 8.6         | <b>4</b> ·8 | $1 \cdot 3$ | 30.3         | 51.4         | $3_{10}$ -helix                |
| - 57       | - 48 | 8.0         | 5.9         | 1.6         | 30.0         | 51.8         | right-handed α-helix           |
| 57         | 48   | 11.2        | 9.5         | $5 \cdot 1$ | 23.9         | <b>43</b> ·8 | $left$ -handed $\alpha$ -helix |
|            |      |             |             |             |              |              |                                |

† Main-chain dihedral angles in degrees. For convention, see Footnote on p. 382.

The third set of model systems investigated were  $\alpha$ -helical structures with mainchain dihedral angles of  $= -57.8^{\circ}$  and  $\psi = -47.0^{\circ}$ . The results for polyglycine, polyalanine, and polyserine in two different side-chain conformations are given in Table 4.

The spacing  $\Delta Z$  between the slicing planes used to obtain figures reported herein was 0.25 Å. Accuracy of the computation was estimated by repeating the computation for many Gly-X-Gly systems after slicing the structure in several different directions. The root-mean-square and maximum deviations in accessibility were 0.3 and 0.5, respectively. For  $\alpha$ -helical polyalanine, a nine residue polymer was constructed and sectioned in two different directions. The results quoted are for the central 5th residue, averaged over the two independent computations. The root-mean-square and maximum deviations for these two computations were 0.1 and 0.2, respectively. For  $\alpha$ -helical polyglycine and polyserine, an eleven-residue polymer was constructed and computation was done once. The results for the central three residues (the 5th, 6th and 7th) were

|                   | Cα          | N   | С   | 0           | Сβ   | ОН          |
|-------------------|-------------|-----|-----|-------------|------|-------------|
| Polyglycine       | 23.8        | 0.9 | 5.3 | 12.1        |      |             |
| Polyalanine       | 5.2         | 0.5 | 1.6 | 5.5         | 36.0 |             |
| Polyserine (II) † | 4-1         | 0.3 | 0.1 | 1.6         | 8.9  | <b>48·0</b> |
| Polyserine (III)‡ | $2 \cdot 3$ | 0.1 | 0.3 | $1 \cdot 2$ | 15.7 | 35.3        |

 TABLE 4

 Static accessibilities in the  $\alpha$ -helical conformation

† The side-chain dihedral angle  $\chi^1 = 180^\circ$ † The side-chain dihedral angle  $\chi^1 = -60^\circ$ 

averaged. The root-mean-square and maximum deviations in this case were 0.2 and 0.6, respectively, for the polyglycine and 0.2 and 0.4, respectively, for the two polyserines. For Gly-Gly-Gly, computations were also carried out with  $\Delta Z=0.5$  Å. The root-mean-square and maximum deviations between the results with  $\Delta Z=0.5$  Å and 0.25 Å were 0.4 and 0.5.

In summary the method of estimating accessibilities gives results which are reliable to about  $\pm 0.5$  regardless of sectioning direction if the interplanar spacing is 0.25 Å or less. The error increases to  $\pm 1$  to 2 if the sectioning interval is increased to 0.5 Å. For many purposes the increased computing costs required by the finer sectioning will not be warranted.

## (b) Proteins

Accessibility calculations were performed for ribonuclease-S (Wyckoff *et al.*, 1970), lysozyme (D. C. Phillips, personal communication), and myoglobin (Watson, 1969). Co-ordinates for individual atoms of these proteins are available from the single crystal X-ray diffraction studies. The solvent radius and the spacing between the slicing planes were 1.4 Å and 0.25 Å, respectively. The calculated accessibilities are given in Table 5. For ribonuclease-S, computations were also performed with 0.88 Å and 0.5 Å intervals of the slicing planes. The root-mean-square and maximum deviations between the calculated accessibilities with the spacings of 0.88 Å and 0.5 Å are 1.1 and 5.0; between 0.5 Å and 0.25 Å, 0.5 and 2.2, respectively. It should be emphasized again that the calculated accessibilities are static accessibilities; no account was taken of the potentially important local or massive flexibility of the molecule. In addition, the average accuracy of the X-ray crystallographic determination of atomic co-ordinates is regarded to be not much better than ~0.25 Å and probably much worse for many atoms on the surface of the protein. Individual numbers given in the Table must, therefore, be used with caution.

The cavities found in the three proteins are listed in Table 6. The electron density map of ribonuclease-S shows that one large and two small cavities found in this molecule are genuine empty spaces. On the other hand, three "buried" water molecules are found in lysozyme (D. C. Phillips, personal communication). Calculations were performed for lysozyme with and without these molecules. One major and six minor cavities are found without these molecules, of which two minor ones disappear when the three water molecules are included in the computation. The remaining five cavities are given in Table 6. In myoglobin, 13 large and small cavities are found. The cavities G1 and G2 are very close to one another and could almost be regarded as

### TABLE 5

Static accessibilities for ribonuclease-S, lysozyme, and myoglobin

(a) RNAse-S C 0 2.5 41.4 4.7 30.0 4.1 5.0 GLY 68 88 CA N 20.7 0.0 27.1 11.7 112 22.0 6.0 23.3 5.9 3.8 25.5 N 6.7 0.7 0.7 AL A СA С 0 CВ 1.6 0.0 0.5 0.0 0.8 0.0 0.0 1.7 0.6 26.5 25.0 25.5 26.5 25.0 25.5 4 5 6 2.1 17.8 5.8 33.2 0.0 40.8 40.8 19 1.4 20 0.0 0.0 21.8 0.4 0.5 1.6 0.4 3.6 52 56 0.9 39.3 24.0 39.3 24.0 64 96 102 0.2 17.5 38.4 38.4 0.0 0.0 0.0 23.6 23.6 0.4 0.0 0.0 0.6 109 0.0 0.0 0.0 0.0 8.1 8.1 0.9 122 4.3 0.0 16.0 16.0 0.8 7.3 1.3 1.2 26.7 26.7 VAL 43 47 54 CB CG1 CG2 9.1 3.4 21.9 0.0 -0.0 -0.0 0.0 -0.0 0.3 0.0 -0.0 0.0 C 0.1 0.0 CA 0.0 Ν 0 5.0 0.0 0.0 11.5 0.0 0.0 0.0 -0.0 0.0 0.0 0.3 0.0 54 57 0.0 0.0 0.0 0.0 0.0 9.3 12.5 2.7 63 8.2 108 0.0 0.0 0.0 0.0 0.0 0.0 11.1 4.3 0.1 1.8 3.9 9.7 19.3 14.2 0.0 5.1 0.0 116 0.0 5.9 118 0.0 0.0 1.9 124 5.1 0.0 14.4 0.0 1.0 0.0 0.1 3.3 3.1 5.4 5.3 4.6 CD1. CD2 0.0 1.8 С ٥ CB 3.4 CG LEU CA 0.0 Ν 35 51 0.0 0.0 0.0 0.0 1.3 0.0 0.0 4.2 0.0 20.3 1.7 3.6 30.3 14.0 0.0 2.1 0.0 0.0 11.9 0.9 1.8 16.1 7.6 N 0.0 0.0 CG2 CG1 CD 0.0 1.1 3.2 0.2 -0.0 -0.0 IL E CA С ٥ СВ 0.0 0.2 0.0 81 0.0 1.1 0.0 0.0 107 0.0 0.0 0.0 0.0 0.0 0.7 0.0 19.9 0.0 0.0 0.0 0.0 0.1 0.3 0.4 7.7 2.1 CA 0.1 0.7 2.8 PR 0 Ν С n CВ CG CD 42 93 0.0 0.0 1.3 0.0 2.0 0.0 4.8 22.6 28.8 9.4 19.1 23.9 16.3 21.4 23.7 26.5 20.3 19.8 23.9 114 117 0.0 0.0 0.0 1.4 0.0 4.0 0.0 1.3 15.8 20.1 13.1 0.9 0.0 0.3 2.1 16.3 CYS с 0 ĊВ CA Ν SG 26 40 58 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.2 0.7 2.8 1.7 0.5 0.0 1.1 2.1 0.0 0.0 1.1 65 0.0 0.0 0.0 0.0 0.0 0.0 72 0.0 0.0 84 0.0 0.0 0.0 2.4 2.1 5.5 95 0.0 0.1 0.0 2.8 110 0.0 0.0 0.0 0.0 2.0 0.6 0.1 2.5 0.2 1.0 0.6 CB 4.1 0.0 0.0 CG SD 2.0 0.0 3.1 16.3 0.0 0.0 CA 0.0 N 0.0 с ME T 0 CE 2.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 13 1.5 4.9 29 30 79 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 5.0 0.6 1.6 0.0 0.0 0.7 0.6 1.0 2.5 4.2 0.4 2.0

## SOLVENT ACCESSIBILITY OF GROUPS IN PROTEINS

| PHE<br>8<br>46<br>120                                                                    | CA<br>0.0<br>0.0                                                                                             | N<br>0.0<br>0.0                                                                                     | с<br>0.0<br>0.0                                                                                                 | 0<br>0.0<br>0.0<br>13.8                                                                             | CB<br>0.0<br>0.0<br>0.9                                                                                               | CG<br>0.0<br>0.0                                                                                                       | CD1<br>0.0<br>0.0<br>4.8                                                            | CE1<br>0.0<br>0.0                                                                                              | CZ<br>-0.0<br>0.0<br>0.6                                                                                           | CE2<br>1.6<br>0.0<br>-0.0                                                         | CD2<br>1.5<br>0.0<br>0.0                                                 | 0.4<br>0.0<br>1.0                                               |                                        |                                            |                                         |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|
|                                                                                          | 0.0                                                                                                          | 0.0                                                                                                 | 0.0                                                                                                             | 4.6                                                                                                 | 0.3                                                                                                                   | 0.0                                                                                                                    | 1.6                                                                                 | 0.2                                                                                                            | 0.2                                                                                                                | 0.5                                                                               | 0.5                                                                      | 0.5                                                             |                                        |                                            |                                         |
| SER<br>15<br>16<br>18<br>21<br>22<br>23<br>50<br>59<br>75<br>75<br>80<br>89<br>90<br>123 | CA<br>0.0<br>1.2<br>5.4<br>12.7<br>8.3<br>0.0<br>5.3<br>2.6<br>0.0<br>2.6<br>0.0<br>7.2<br>0.0<br>0.0<br>0.0 | N 0100<br>02.9<br>47.9<br>5.410<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | C<br>0.0<br>7<br>0.9<br>3.0<br>0.5<br>0.5<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0<br>0.0<br>28.8<br>27.9<br>7.0<br>10.5<br>18.0<br>25.2<br>0.0<br>0.0<br>0.0<br>2.7<br>12.3<br>11.4 | CB<br>3-5<br>16+0<br>23+0<br>24+9<br>28+7<br>16+3<br>28+4<br>19+1<br>26+9<br>0+0<br>22+2<br>7-4<br>10+7<br>0+0<br>6+9 | DH<br>17-1<br>24-2<br>23-7<br>31-5<br>32-7<br>18-7<br>7-8<br>4-2<br>29-4<br>1-7<br>29-2<br>16-4<br>36-9<br>0-0<br>23-9 | 3.<br>16.<br>23.<br>24.<br>28.<br>16.<br>28.<br>19.<br>26.<br>7.<br>10.<br>0.<br>6. | 5 17.<br>0 24.<br>0 23.<br>9 31.<br>7 32.<br>3 18.<br>4 7.<br>1 4.<br>9 29.<br>4 16.<br>7 36.<br>0 0.<br>9 23. | 1 10<br>2 20<br>7 23<br>5 28<br>7 30<br>7 17<br>8 18<br>2 11<br>4 28<br>7 0<br>2 25<br>4 11<br>9 23<br>0 0<br>9 15 | 313275162879804                                                                   |                                                                          |                                                                 |                                        |                                            |                                         |
|                                                                                          | 3.3                                                                                                          | 4.1                                                                                                 | 0.6                                                                                                             | 10.8                                                                                                | 15.6                                                                                                                  | 19.8                                                                                                                   | 15.                                                                                 | 6 19.                                                                                                          | 8 17.                                                                                                              | 7                                                                                 |                                                                          |                                                                 |                                        |                                            |                                         |
| THR<br>3<br>17<br>36<br>45<br>70<br>78<br>82<br>87<br>99<br>100                          | CA<br>3.6<br>0.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.7<br>0.0<br>2.8                                     | N<br>0.0<br>0.0<br>0.3<br>1.3<br>0.4<br>0.0<br>1.0<br>0.0                                           | C<br>2.9<br>0.8<br>0.0<br>0.2<br>0.0<br>0.2<br>0.0<br>0.3<br>5<br>0.0<br>0.8                                    | 0<br>0.0<br>31.3<br>0.9<br>0.0<br>14.5<br>12.1<br>0.0<br>12.8<br>23.4<br>0.0                        | CB<br>12.4<br>5.0<br>0.7<br>0.6<br>0.0<br>0.0<br>0.0<br>0.0<br>6.5<br>0.0<br>9.3                                      | CG<br>29.4<br>32.0<br>3.2<br>9.9<br>39.2<br>10.4<br>0.3<br>12.5<br>2.9<br>10.3                                         | 0H<br>13.7<br>12.2<br>0.0<br>1.3<br>3.8<br>26.3<br>9.4<br>6.7<br>17.4<br>25.1       | 20<br>18<br>2<br>4<br>19<br>5<br>6<br>9                                                                        | 9 13<br>5 12<br>0 0<br>9 1<br>9 3<br>2 26<br>1 9<br>5 6<br>0 17<br>8 25                                            | 7 18.<br>2 16.<br>0 1.<br>3 3.<br>8 14.<br>3 12.<br>4 3.<br>7 8.<br>4 6.<br>1 14. | 5437522659                                                               |                                                                 |                                        |                                            |                                         |
|                                                                                          | 1.1                                                                                                          | 0.3                                                                                                 | 0.8                                                                                                             | 9.5                                                                                                 | 3.5                                                                                                                   | 14.9                                                                                                                   | 11.6                                                                                | 9.                                                                                                             | 2 11                                                                                                               | 6 13.                                                                             | 0                                                                        |                                                                 |                                        |                                            |                                         |
| TYR<br>25<br>73<br>76<br>92<br>97<br>115                                                 | CA<br>1.7<br>0.0<br>1.4<br>0.0<br>0.0                                                                        | N<br>2.1<br>0.0<br>1.9<br>0.0<br>1.6                                                                | C<br>0.0<br>0.3<br>C.0<br>0.0<br>0.0                                                                            | 0<br>0.0<br>21.8<br>20.2<br>7.1<br>9.9                                                              | CB<br>15.9<br>0.0<br>11.7<br>12.5<br>0.0<br>12.4                                                                      | CG<br>0.5<br>0.9<br>1.5<br>1.5<br>0.0<br>1.0                                                                           | CD1<br>1.8<br>0.0<br>8.7<br>13.0<br>0.0<br>5.1                                      | CE1<br>0.1<br>0.0<br>8.0<br>13.5<br>0.0<br>11.4                                                                | C7<br>1.1<br>0.0<br>2.0<br>0.6<br>0.0<br>2.7                                                                       | CE2<br>16.0<br>5.8<br>15.4<br>1.4<br>0.2<br>7.3                                   | CD2<br>17.3<br>0.0<br>10.8<br>0.2<br>C.0<br>11.2                         | DH<br>0.1<br>17.8<br>37.0<br>32.0<br>0.0<br>13.8                | 7.5<br>0.8<br>8.3<br>6.1<br>0.0<br>7.3 | C.1<br>17.8<br>37.0<br>32.0<br>0.0<br>13.8 | 6.6<br>2.9<br>11.9<br>9.3<br>0.0<br>8.1 |
|                                                                                          | 0.5                                                                                                          | 0.9                                                                                                 | 0.1                                                                                                             | 9.8                                                                                                 | 8.8                                                                                                                   | 0.7                                                                                                                    | 4.8                                                                                 | 5.5                                                                                                            | 1.1                                                                                                                | 7.7                                                                               | 6.6                                                                      | 16.8                                                            | 5.0                                    | 16.8                                       | 6.5                                     |
| ASP<br>14<br>38<br>53<br>83<br>121                                                       | CA<br>0.0<br>0.1<br>0.2<br>C.0<br>1.2                                                                        | N<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                | C<br>0.0<br>0.0<br>0.0<br>0.0<br>1.4                                                                            | 0<br>11.6<br>25.7<br>2.1<br>0.0<br>2.3                                                              | CB<br>C.0<br>22.9<br>O.8<br>1.6<br>0.0                                                                                | CG<br>0.0<br>1.8<br>0.0<br>0.0                                                                                         | 001<br>3.1<br>0.9<br>14.9<br>28.4<br>1.9                                            | 0D2<br>7.6<br>37.8<br>36.4<br>0.1<br>18.2                                                                      | 0.<br>11.<br>1.<br>0.<br>3.                                                                                        | C 5<br>9 19<br>3 25<br>8 14<br>0 19                                               | 3 2<br>3 15<br>6 13<br>3 7<br>1 5                                        | 7<br>6<br>5<br>5<br>0                                           |                                        |                                            |                                         |
|                                                                                          | 0.3                                                                                                          | 0.0                                                                                                 | C <b>.</b> 3                                                                                                    | 8.3                                                                                                 | 5.1                                                                                                                   | 0.5                                                                                                                    | <b>9.</b> 8                                                                         | 20.0                                                                                                           | 2.                                                                                                                 | 8 14.                                                                             | 98.                                                                      | 9                                                               |                                        |                                            |                                         |
| ASN<br>24<br>27<br>34<br>44<br>67<br>71<br>94<br>103<br>113                              | CA<br>8.3<br>0.0<br>1.5<br>0.0<br>3.1<br>0.0<br>11.4<br>0.0<br>0.0                                           | N<br>1.0<br>0.0<br>0.0<br>1.2<br>0.0<br>0.0<br>4.6<br>0.0<br>5.5                                    | C<br>C 0<br>0 0<br>0 0<br>0 0<br>C 0<br>0 0<br>2 0<br>0 0<br>0 3                                                | 0<br>0.0<br>0.4<br>5.5<br>0.0<br>20.3<br>35.2<br>0.0<br>10.2<br>8.2<br>31.1                         | CB<br>7.8<br>4.4<br>2.0<br>16.7<br>6.5<br>6.3<br>19.1<br>5.1<br>19.8                                                  | CG<br>1.5<br>2.5<br>4.0<br>0.0<br>2.3<br>1.8<br>0.0<br>3.7<br>2.4<br>1.3                                               | NOD1<br>16.6<br>11.0<br>20.5<br>0.7<br>25.6<br>34.5<br>14.0<br>43.7<br>38.3<br>31.8 | NOD2<br>7.9<br>0.2<br>24.8<br>0.0<br>3.8<br>15.6<br>J.1<br>0.0<br>18.9<br>49.5                                 | 4<br>2<br>3<br>0<br>9<br>4<br>3<br>10                                                                              | 6 12<br>4 5<br>0 22<br>0 0<br>5 14<br>1 25<br>2 7<br>9 21<br>7 28<br>5 40         | 3 8<br>6 4<br>7 12<br>3 0<br>7 12<br>0 14<br>5 5<br>6 16<br>6 16<br>7 25 | 5<br>0<br>9<br>2<br>1<br>6<br>3<br>9<br>2<br>6                  |                                        |                                            |                                         |
|                                                                                          | 2.4                                                                                                          | 1.2                                                                                                 | 0.3                                                                                                             | 11.1                                                                                                | 8.8                                                                                                                   | 1.5                                                                                                                    | 23.7                                                                                | 12.2                                                                                                           | 5.                                                                                                                 | 1 17.                                                                             | 9 11                                                                     | 5                                                               |                                        |                                            |                                         |
| GLU<br>2<br>49<br>86<br>111                                                              | CA<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8                                                                        | N<br>0.0<br>0.0<br>0.0                                                                              | C<br>1.3<br>2.0<br>0.0<br>0.2<br>2.7                                                                            | 0<br>29.4<br>0.4<br>0.0<br>23.7<br>8.5                                                              | CB<br>12.2<br>1.5<br>0.0<br>3.4<br>14.1                                                                               | CG<br>16.0<br>6.4<br>0.0<br>0.0<br>0.0<br>0.0                                                                          | CD<br>D•6<br>D•4<br>D•0<br>0•6<br>0•8                                               | 0E1<br>5.2<br>31.7<br>15.7<br>7.2<br>29.1                                                                      | 0E2<br>0.6<br>20.0<br>19.8<br>21.2<br>19.3                                                                         | 9.<br>2.<br>0.<br>1.<br>5.                                                        | 6 2<br>8 25<br>0 17<br>3 14<br>0 24<br>7 17                              | 9 6.9<br>8 12.0<br>8 7.1<br>2 6.5<br>2 12.7                     |                                        |                                            |                                         |
|                                                                                          | 0.2                                                                                                          | 0.0                                                                                                 | 1.2                                                                                                             | ↓ <b>८</b> ∎4                                                                                       | 6.2                                                                                                                   | 4.5                                                                                                                    | 0.5                                                                                 | 11.8                                                                                                           | 16.2                                                                                                               | 3.                                                                                | 17.                                                                      | .0 9.0                                                          |                                        |                                            |                                         |
| GLN<br>11<br>28<br>55<br>60<br>69<br>74<br>101                                           | CA<br>0.0<br>0.5<br>0.0<br>2.9<br>4.5<br>0.0<br>C.0                                                          | N<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8                                                  | C<br>0.9<br>1.0<br>0.3<br>0.1<br>0.0<br>0.2                                                                     | 0<br>0.5<br>2.9<br>3.5<br>0.0<br>0.0<br>11.4                                                        | CB<br>0.0<br>3.3<br>6.7<br>0.9<br>6.0<br>0.1<br>3.5                                                                   | CG<br>9.9<br>11.3<br>1.0<br>2.6<br>0.0<br>0.0<br>20.7                                                                  | CD<br>D.7<br>2.6<br>1.0<br>1.1<br>0.1<br>0.0<br>8.2                                 | NOE1<br>3.9<br>6.3<br>17.3<br>14.4<br>26.2<br>22.4<br>17.5                                                     | NOE2<br>1.2<br>44.2<br>24.8<br>11.4<br>27.1<br>0.0<br>33.9                                                         | 0<br>5<br>2<br>1<br>2<br>0                                                        | 2 2<br>7 25<br>9 21<br>2 12<br>0 26<br>0 11<br>8 25                      | 6 1.2<br>2 13.5<br>0 10.2<br>9 5.9<br>6 11.9<br>2 4.5<br>7 16.8 |                                        |                                            |                                         |
|                                                                                          | 1.1                                                                                                          | 0.1                                                                                                 | C+2                                                                                                             | 2.7                                                                                                 | 2.8                                                                                                                   | >•1                                                                                                                    | 1.0                                                                                 | 15.4                                                                                                           | 20+4                                                                                                               | 3.                                                                                | 5 17.                                                                    | • 7 9.1                                                         |                                        |                                            |                                         |

## B. LEE AND F. M. RICHARDS

| HI S | CA   | N    | С    | 0    | C 8  | CG   | ND1  | CE1  | NE2  | CD2     |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|---------|------|------|------|------|
| 12   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 3.4  | 0.0  | 0.0     | 0.8  | 0.0  | 0.6  |      |
| 48   | 0.0  | 0.0  | 0.0  | 3.4  | 0.3  | 0.7  | 0.2  | ·5.5 | 3.9  | 0.0     | 1.6  | 2.1  | 1.8  |      |
| 105  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 8.2  | 27.4 | 6.4  | 0.0     | 3.6  | 13.7 | 7.0  |      |
| 119  | 0.0  | 0.0  | 0.0  | 0.1  | 12.9 | 1.8  | 3.8  | 3.9  | 19.2 | 12.4    | 9.4  | 8.2  | 9.0  |      |
|      | 0.0  | 0.0  | 0,0  | 0.9  | 3.3  | 0.6  | 3.1  | 10.1 | 7.4  | 3.1     | 3.9  | 6.0  | 4.6  |      |
| LYS  | CA   | N    | с    | · 0  | CB   | CG   | CD   | CE   | NZ   |         |      |      |      |      |
| 1    | 14.4 | 29.7 | 2.5  | 30.4 | 25.3 | 12.5 | 13.8 | 18.6 | 57.0 | 17.6    | 57.0 | 25.5 |      |      |
| 7    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.2  | 17.7 | 9.3  | 39.2 | 6.8     | 39.2 | 13.3 |      |      |
| 31   | 0.0  | 0.0  | 0.1  | 0.0  | 0.2  | 12.4 | 22.3 | 11.7 | 26.9 | 11.7    | 26.9 | 14.7 |      |      |
| 37   | 6.2  | 2.1  | 0.8  | 6.4  | 15.2 | 9.4  | 0.0  | 15.5 | 28.1 | 10.0    | 28.1 | 13.6 |      |      |
| 41   | 0.0  | 0.0  | 0.0  | 0.0  | C+0  | 2.4  | 0.0  | 23.4 | 10.6 | 6.5     | 10.6 | 7.3  |      |      |
| 61   | 5.8  | 0.2  | 0.0  | 0.0  | 0.9  | 11.8 | 0.0  | 14.6 | 30.5 | 6.8     | 30.5 | 11.6 |      |      |
| 66   | 5.1  | 0.9  | 1.1  | 25.4 | 8.4  | 13.8 | 14.1 | 13.0 | 52.0 | 12.3    | 52.0 | 20.3 |      |      |
| 91   | 0.0  | 0.0  | 0.0  | 4.0  | 10.9 | 22.2 | 7.6  | 30.4 | 42.3 | 17.8    | 42.3 | 22.7 |      |      |
| 98   | 2.9  | 0.0  | -0.0 | 0.0  | 6.1  | 1.3  | 22.5 | 14.7 | 38.2 | 11.1    | 38.2 | 16.5 |      |      |
| 104  | 0.0  | 0.0  | 0.0  | 0.0  | 0.4  | 9.7  | 17.0 | 2.1  | 23.9 | 7.3     | 23.9 | 10.6 |      |      |
|      | 3.4  | 3.3  | 0.4  | 6.6  | 6.7  | 9.6  | 11.5 | 15.3 | 34.9 | 10.8    | 34.9 | 15.6 |      |      |
| AR G | CA   | N    | с    | a    | СB   | CG   | сo   | NE   | сz   | NT1 /   | NTZ  |      |      |      |
| 10   | 4.3  | 0.2  | 0.0  | 0.0  | 12.9 | 5.8  | 7.3  | 0.0  | 0.0  | 9.0 14  | 8.8  | 6.5  | 9.3  | 7.7  |
| 33   | 0.5  | 0.0  | 0.0  | 6.6  | 0.0  | 0.0  | 8.7  | 14.1 | 1.6  | 7.8 1   | 7.4  | 2.6  | 13.1 | 7.1  |
| 39   | 3.4  | 0.0  | 0.0  | 0.0  | 9.3  | 0.0  | 5.3  | 16.6 | 1.0  | 44.1 10 | 5.8  | 3.9  | 25.8 | 13.3 |
| 85   | 0.0  | 0.0  | 0.0  | 0.0  | 2.9  | 0.3  | 15.3 | 5.7  | 1.1  | 42.7 40 | 0.9  | 4.9  | 29.7 | 15.5 |
|      | 2.1  | 0.0  | 0.0  | 1.6  | 6.3  | 1.5  | 9.1  | 9.1  | 0.9  | 25.9 2  | 3.4  | 4.5  | 19.5 | 10.9 |

## (b)*Lyzozyme*

| GLY<br>4<br>16<br>22<br>-26<br>49<br>54<br>67<br>71<br>102<br>104 | CA<br>20.4<br>18.6<br>17.7<br>0.0<br>10.8<br>0.0<br>16.3<br>10.9<br>14.2<br>2.4 | N<br>0.4<br>1.2<br>3.0<br>0.0<br>3.6<br>0.0<br>0.4<br>6.0<br>0.0<br>3.0 | C<br>0.1<br>1.4<br>0.1<br>0.9<br>0.9<br>0.9<br>5.8<br>0.4<br>3.1<br>0.0 | 0<br>0.0<br>10.5<br>31.6<br>0.0<br>0.0<br>0.0<br>40.0<br>6.4<br>35.7<br>0.0 |                   |         |          |             |     |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|---------|----------|-------------|-----|
| 117                                                               | 22.3                                                                            | 7.5                                                                     | 2.8                                                                     | 38.0                                                                        |                   |         |          |             |     |
| 120                                                               | 6706                                                                            | 11.00                                                                   | 400                                                                     | 2300                                                                        |                   |         |          |             |     |
|                                                                   | 13.2                                                                            | 3.0                                                                     | 1.4                                                                     | 15.4                                                                        |                   |         |          |             |     |
| AL A<br>9<br>10                                                   | CA<br>0.0<br>1.1                                                                | N<br>0.0<br>0.0                                                         | с<br>0.0<br>1.0                                                         | 0<br>0.0<br>2.9                                                             | CB<br>0.0<br>28.3 | 0<br>28 | .0<br>.3 |             |     |
| 11                                                                | 6.2<br>-0.0                                                                     | 0.6                                                                     | 0.0                                                                     | 0.0                                                                         | 9.8               | 9       | •8<br>•0 |             |     |
| 32                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | -0.0              | ŏ       | .0       |             |     |
| 42<br>82                                                          | 7.7                                                                             | 0.2                                                                     | 0.0                                                                     | 0.0                                                                         | 9•8<br>12•0       | 12      | •8<br>•0 |             |     |
| 90                                                                | 4.5                                                                             | 0.7                                                                     | 0.0                                                                     | 3.8                                                                         | 10.0              | 10      | .0       |             |     |
| 95                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | 10      | •0       |             |     |
| 110                                                               | 3.0                                                                             | 2.0                                                                     | -0.0                                                                    | -0.0                                                                        | 4.5               | 4       | 5        |             |     |
| 122                                                               | 0.0                                                                             | 0.0                                                                     | 0.2                                                                     | 10.2                                                                        | 7.7               | 7.      | •7       |             |     |
|                                                                   | 3.0                                                                             | 0.1                                                                     | 0.2                                                                     | 4.2                                                                         | 7.7               | 7       | •7       |             |     |
| VAL 2                                                             | CA                                                                              | N<br>3 • 2                                                              | C<br>0-0                                                                | 0                                                                           | C8                | CG1     | CG2      | 17.5        |     |
| 29                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | 0.0     | 0.0      | 0.0         |     |
| 92                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | -0.0    | 0.0      | 0.0         |     |
| 99                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 2.8                                                                         | 0.0               | 29.8    | 27.7     | 0±0<br>22-1 |     |
| 120                                                               | 0.0                                                                             | 0.2                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | 8.2     | 0.4      | 2.9         |     |
|                                                                   | 0,0                                                                             | 1.1                                                                     | 0.0                                                                     | 3.6                                                                         | ·2•5              | 9.9     | 8.8      | 7.1         |     |
| LEU                                                               | CA                                                                              | N                                                                       | <u>э</u> .                                                              | 0                                                                           | CB                | C G     | CD1      | CD2         |     |
| 17                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | 0.0     | 0.0      | 0.0         | 0.0 |
| 25                                                                | ñ.o                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.4               | 0.0     | 0.0      | 0.7         | 0.3 |
| 56                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | -0.0    | -0-0     | -0.0        | 0.0 |
| 83                                                                | 0.0                                                                             | 0.0                                                                     | 0.0                                                                     | 0.0                                                                         | 0.0               | 0.0     | 0.0      | 0.0         | 0.0 |
| 84                                                                | 0.0                                                                             | 0.0                                                                     | 1.2                                                                     | 3.2                                                                         | 5.1               | 0.0     | 0.0      | 21.0        | 6.5 |
| 129                                                               | 3.4                                                                             | 1.7                                                                     | 9.5                                                                     | 39.6                                                                        | 5.7               | 0.0     | 0.6      | 7.6         | 3.5 |
|                                                                   | 0.5                                                                             | 0.2                                                                     | 1.3                                                                     | 7.1                                                                         | 1.5               | 0.8     | 0.9      | 9.3         | 3,1 |

| ILE<br>55<br>58<br>78<br>88<br>98<br>124                         | CA<br>0.0<br>1.8<br>0.0<br>0.0<br>0.0<br>0.0                      | N<br>0.0<br>0.0<br>1.1<br>0.0<br>0.0                             | C<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0<br>0.0<br>0.0<br>0.0<br>2.7<br>5.8                                | CB<br>0.0<br>3.3<br>0.0<br>0.0                                        | CG2<br>-0.0<br>0.2<br>0.7<br>0.0<br>3.7<br>0.0                              | CG1<br>-0.9<br>0.0<br>9.6<br>2.5<br>0.0<br>2.9        | CD1<br>0.0<br>34.8<br>-0.0<br>1.4<br>21.1                               | 0.<br>9.<br>0.<br>1.                                                             | 0                                                                 |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
|                                                                  | 0.3                                                               | 0.2                                                              | 0.0                                                                     | 1.4                                                                 | 0.5                                                                   | 0.8                                                                         | 1.0                                                   | 9.6                                                                     | 3.                                                                               | .0                                                                |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| PR (1<br>70<br>79                                                | CA<br>6.4<br>0.0                                                  | N<br>0.7<br>0.0                                                  | C<br>1.7<br>0.1                                                         | 0<br>26•2<br>0•0                                                    | C8<br>25.8<br>15.0                                                    | CG<br>32.1<br>27.7                                                          | CD<br>7.9<br>8.5                                      | 21.<br>17.                                                              | 9                                                                                |                                                                   |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
|                                                                  | 3.2                                                               | 0.3                                                              | C. 9                                                                    | 13.1                                                                | 20.4                                                                  | 29.9                                                                        | 8.2                                                   | 19.                                                                     | 5                                                                                |                                                                   |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| CYS<br>6<br>30<br>64<br>76<br>80<br>94<br>115<br>127             | CA<br>6.0<br>0.0<br>0.1<br>0.0<br>1.3<br>0.0                      | N<br>2.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0        | C<br>2.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0<br>0.7<br>0.0<br>15.7<br>0.0<br>0.0<br>0.1<br>22.8                | CB<br>22-3<br>0-0<br>0-0<br>4+6<br>0-5<br>0-1<br>0-0<br>1-3           | SG<br>10.2<br>0.4<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0                        | 16.<br>0.<br>2.<br>0.<br>0.<br>0.<br>0.               | 2<br>2<br>3<br>4<br>2<br>0<br>0<br>7                                    |                                                                                  |                                                                   |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
|                                                                  | 0.2                                                               | 0.3                                                              | 0.4                                                                     | 4.9                                                                 | 3.6                                                                   | 1.3                                                                         | 2                                                     | ,5                                                                      |                                                                                  |                                                                   |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| MET<br>12<br>105                                                 | CA<br>0.9<br>0.9                                                  | N<br>0.0<br>0.0                                                  | с<br>0•0<br>0•0                                                         | 0<br>0.0<br>0.0                                                     | СВ<br>0.0<br>0.0                                                      | CG<br>-0.0<br>0.0                                                           | SD<br>-0.0<br>0.0                                     | CE<br>-0.0<br>-0.0                                                      | 0.<br>J.                                                                         | 0                                                                 |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
|                                                                  | 0.0                                                               | 0.0                                                              | 0.0                                                                     | 0.0                                                                 | 0.0                                                                   | 0.0                                                                         | 0.0                                                   | 0.0                                                                     | e.                                                                               | .0                                                                |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| РЧЕ<br>3<br>34<br>38                                             | CA<br>0.0<br>0.4<br>0.0                                           | N<br>D.O<br>O.O<br>O.O                                           | C<br>0.8<br>0.1<br>0.0                                                  | 0<br>5.8<br>24.0<br>0.0                                             | CB<br>0.0<br>-0.0<br>0.2                                              | CG<br>0.0<br>0.0<br>0.0                                                     | CD1<br>0.0<br>0.0<br>0.0                              | CE1<br>3.9<br>5.1<br>0.0                                                | CZ<br>5.6<br>14.8<br>0.0                                                         | CE2<br>0.0<br>9.3<br>3.3                                          | CD2<br>0.0<br>4.4<br>7.9                       | 1.                                              | 3                                              |                                               |                                        |                                           |                                        |
|                                                                  | 0.1                                                               | 0.0                                                              | 0.3                                                                     | 9.9                                                                 | 0.1                                                                   | 0.0                                                                         | 0.0                                                   | 3.0                                                                     | 6.8                                                                              | 4.2                                                               | 4.1                                            | Ż                                               | 6                                              |                                               |                                        |                                           |                                        |
| TR Y<br>28<br>62<br>63<br>108<br>111<br>123                      | CA<br>0.0<br>0.0<br>1.0<br>0.0                                    | N<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | C<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                         | CB<br>0.0<br>0.9<br>0.0<br>0.0<br>0.0                                 | CG<br>0.0<br>1.0<br>0.0<br>0.0<br>0.0                                       | CD1<br>0.0<br>6.0<br>1.0<br>3.9<br>0.0                | NE<br>3.0<br>18.0<br>11.2<br>2.9<br>0.0<br>11.4                         | CE1<br>0.0<br>2.0<br>0.0<br>0.7<br>0.0<br>2.0                                    | CZ1<br>0.0<br>18.6<br>11.4<br>-0.0<br>5.0<br>11.5                 | CH<br>0.0<br>18.5<br>5.3<br>0.0<br>3.2<br>12.5 | CZ2<br>-0.0<br>10.3<br>2.3<br>0.0<br>0.0<br>8.4 | CE2<br>-0.0<br>8.7<br>0.0<br>0.0<br>0.0<br>0.7 | CD2<br>0.0<br>2.1<br>0.0<br>0.2<br>0.0<br>0.0 | 0.0<br>7.6<br>2.2<br>0.5<br>0.9<br>4.0 | 0.0<br>18.0<br>11.2<br>2.9<br>C.0<br>11.4 | C.0<br>8.6<br>3.1<br>C.8<br>C.8<br>4.7 |
|                                                                  | 0.2                                                               | 0.0                                                              | 0.0                                                                     | Ó.0                                                                 | 0.2                                                                   | 0.2                                                                         | 1.8                                                   | 7.2                                                                     | 0.8                                                                              | 7.9                                                               | 6.6                                            | 3.5                                             | 1.6                                            | 0.4                                           | 2.5                                    | 7.2                                       | 3.0                                    |
| SER<br>24<br>36<br>50<br>60<br>72<br>81<br>85<br>86<br>91<br>100 | CA<br>0.0<br>0.9<br>0.0<br>0.0<br>0.0<br>0.4<br>7.1<br>0.0<br>0.0 | N<br>0.7<br>0.0<br>0.0<br>0.0<br>2.4<br>0.7<br>2.9<br>0.0<br>0.0 | C<br>0.9<br>2.8<br>0.9<br>0.0<br>0.1<br>0.0<br>0.0<br>1.1<br>C.9<br>0.1 | 0<br>0.0<br>3.9<br>0.0<br>26.4<br>8.4<br>0.0<br>12.4<br>0.0<br>13.6 | CB<br>15.9<br>C.0<br>0.0<br>6.6<br>26.8<br>24.7<br>15.5<br>0.0<br>9.1 | DH<br>6.4<br>0.0<br>1.4<br>0.0<br>0.1<br>29.8<br>15.6<br>31.1<br>0.0<br>2.7 | 15.<br>0.<br>0.<br>26.<br>24.<br>15.<br>0.            | 9 6.<br>0 1.<br>0 1.<br>0 0.<br>8 29.<br>7 10.<br>5 31.<br>0 0.<br>1 2. | 4 11.<br>0 0.<br>4 0.<br>0 0.<br>1 3.<br>8 28.<br>6 17.<br>1 23.<br>0 0.<br>7 5. | 2070436309                                                        |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
|                                                                  | 0.8                                                               | 0.7                                                              | 0.4                                                                     | 6.5                                                                 | 9.9                                                                   | 8.2                                                                         | 9.                                                    | 98.                                                                     | 29.                                                                              | 0                                                                 |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| THR<br>40<br>43<br>47<br>51<br>69<br>89<br>118                   | CA<br>0.0<br>3.2<br>0.0<br>0.0<br>0.0<br>5.0                      | N<br>0.0<br>1.3<br>0.3<br>0.0<br>0.7<br>0.0<br>0.0<br>0.0        | C<br>0.0<br>0.4<br>1.3<br>0.0<br>2.0<br>0.0<br>3.4                      | 0<br>0.0<br>13.6<br>29.8<br>0.0<br>1.0<br>0.0<br>13.6<br>8.3        | CB<br>C•9<br>2•3<br>6•9<br>0•0<br>0•0<br>3•4<br>10•1<br>3•2           | CG<br>9.8<br>45.8<br>2.7<br>1.5<br>27.0<br>23.1<br>15.7                     | 0H<br>0.0<br>36.2<br>38.3<br>0.4<br>0.0<br>8.5<br>4.2 | 0.<br>6.<br>26.<br>1.<br>5.<br>15.<br>16.                               | 0 0.<br>1 36.<br>3 38.<br>4 0.<br>8 0.<br>2 8.<br>6 4.<br>5 12.                  | 0 0.<br>2 16.<br>3 30.<br>4 1.<br>0 0.<br>5 12.<br>2 12.<br>5 10. | 0130595                                        |                                                 |                                                |                                               |                                        |                                           |                                        |
| סעד                                                              |                                                                   |                                                                  |                                                                         |                                                                     | 542                                                                   |                                                                             |                                                       |                                                                         |                                                                                  | . 10.                                                             |                                                |                                                 |                                                |                                               |                                        |                                           |                                        |
| 20<br>23<br>53                                                   | 1.4<br>0.0<br>0.0                                                 | 0.0                                                              | 0.0                                                                     | 0.0                                                                 | 0.0<br>0.0<br>0.0                                                     | 0.0                                                                         | 8.1<br>2.4<br>0.0                                     | 17.8<br>10.0<br>13.1                                                    | 0.2                                                                              | 0.0<br>3.5<br>0.0                                                 | 0.0                                            | 0H<br>26.2<br>21.6<br>6.3                       | 3.<br>2.<br>1.                                 | 7 26.2<br>5 21.6<br>9 6.3                     | 6•5<br>4•9<br>2•4                      |                                           |                                        |
|                                                                  | 0.5                                                               | 0.0                                                              | 0.0                                                                     | 0.0                                                                 | 0.0                                                                   | 0.0                                                                         | 3.5                                                   | 13.6                                                                    | 0.7                                                                              | 1.2                                                               | 0.0                                            | 18.0                                            | 2.                                             | 7 18.0                                        | 4.6                                    |                                           |                                        |
| AS P<br>18<br>52<br>-66                                          | CA<br>0.0<br>0.0<br>3.8                                           | N<br>0.0<br>0.0<br>0.0                                           | C<br>0.0<br>5.1                                                         | 0<br>13.0<br>0.0<br>23.1                                            | CB<br>7.1<br>0.0<br>1.6                                               | CG<br>0.4<br>0.0<br>0.0                                                     | 0D1<br>5.9<br>1.1<br>0.0                              | 0D2<br>21.8<br>18.4<br>0.9                                              | 3.<br>0.<br>0.                                                                   | 713.<br>09.<br>80.                                                | 9 8<br>8 4<br>0 0                              | • 8<br>• 9<br>• 4                               |                                                |                                               |                                        |                                           |                                        |

# B. LEE AND F. M. RICHARDS

| 87<br>101<br>103<br>119                                                             | 1.0<br>3.5<br>2.0<br>5.2                                                                                            | 0.1<br>C.O<br>0.3<br>2.2                                                                     | 0.0<br>1.9<br>3.4<br>0.0                                                              | 1.1<br>37.0<br>0.2<br>1.6                                                                     | 13.2<br>14.5<br>0.6<br>22.1                                                                         | 2.2<br>1.5<br>1.8<br>1.5                                                                      | 8.0<br>18.8<br>42.1<br>5.6                                                                                                                                           | 46.3<br>10.0<br>38.2<br>30.8                                                                                        | 7<br>6<br>1                                                                       | •7 27.1<br>•0.14.4<br>•2 40.1<br>•8 18.2                                                                                                                        | 1 17.4<br>4 11.2<br>1 20.7<br>2 15.0                                                                                                                                                          |                                                                                     |                                                                                              |                                                                                             |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                     | 2.2                                                                                                                 | 0•4                                                                                          | • 1.5                                                                                 | 10.9                                                                                          | 8.4                                                                                                 | 1.1                                                                                           | 11.6                                                                                                                                                                 | 23+7                                                                                                                | · 4                                                                               | .8 17.6                                                                                                                                                         | 5 11.2                                                                                                                                                                                        |                                                                                     |                                                                                              |                                                                                             |
| ASN<br>19<br>27<br>39<br>44<br>46<br>48<br>59<br>65<br>74<br>77<br>93<br>106<br>113 | CA<br>0.0<br>0.0<br>0.0<br>1.5<br>4.0<br>4.4<br>4.0<br>-0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | N<br>0.0<br>0.2<br>0.0<br>0.3<br>0.0<br>1.6<br>0.0<br>7.6<br>0.0<br>7.6<br>0.0<br>0.0<br>0.0 | C<br>0.1<br>0.0<br>0.0<br>0.0<br>3.1<br>5.0<br>0.1<br>1.3<br>C.4<br>1.4<br>0.0<br>0.2 | 16.6<br>0.0<br>5.7<br>0.0<br>13.3<br>13.3<br>0.0<br>1.6<br>7.6<br>17.6<br>10.9<br>1.4<br>37.4 | CB<br>12.2<br>9.6<br>2.7<br>3.1<br>12.4<br>23.3<br>10.3<br>C.5<br>13.9<br>11.6<br>8.6<br>2.3<br>8.6 | CG<br>1.7<br>0.0<br>2.2<br>1.6<br>2.4<br>1.6<br>1.7<br>1.7<br>0.0<br>1.7<br>1.2<br>1.6<br>2.3 | NOD1<br>24.8<br>7.1<br>8.3<br>0.5<br>40.5<br>1.4<br>8.3<br>0.5<br>1.4<br>8.3<br>0.0<br>1.4<br>1.4<br>0.0<br>3.0<br>1.4<br>1.0<br>0.0<br>3.8<br>1.7.1<br>2.1<br>2.4.0 | NOD2<br>28.1<br>11.9<br>49.2<br>32.5<br>17.7<br>26.1<br>12.5<br>8.0<br>37.6<br>10.0<br>42.5<br>32.4<br>25.8<br>30.7 | 6<br>0<br>5<br>1<br>2<br>7<br>1<br>2<br>6<br>1<br>1<br>7<br>6<br>4<br>4<br>1<br>5 | •9 26.4<br>•0 3.5<br>•9 28.1<br>•4 16.5<br>•4 29.1<br>•5 19.4<br>•5 19.4<br>•5 19.4<br>•5 19.4<br>•5 19.4<br>•0 5.5<br>•7 38.1<br>•0 24.1<br>•9 11.4<br>•5 27.3 | $\begin{array}{c} 4 & 16.7 \\ 5 & 4.6 \\ 7 & 17.3 \\ 5 & 8.9 \\ 1 & 15.7 \\ 7 & 10.65 \\ 5 & 5.7 \\ 9 & 13.55 \\ 5 & 5.7 \\ 9 & 13.55 \\ 22.4 \\ 7 & 14.4 \\ 4 & 6.7 \\ 3 & 16.4 \end{array}$ |                                                                                     |                                                                                              |                                                                                             |
|                                                                                     | 0.8                                                                                                                 | 0.7                                                                                          | 0.8                                                                                   | 8.2                                                                                           | 8.4                                                                                                 | 1.4                                                                                           | 13.2                                                                                                                                                                 | 25.7                                                                                                                | 4                                                                                 | .9 19.5                                                                                                                                                         | 12.2                                                                                                                                                                                          |                                                                                     |                                                                                              |                                                                                             |
| GLU<br>7<br>35                                                                      | CA<br>5•4<br>0•0                                                                                                    | N<br>3.7<br>0.0                                                                              | C<br>0.0<br>0.6                                                                       | 0<br>3.2<br>12.9                                                                              | CB<br>7.5<br>0.0                                                                                    | CG<br>13.3<br>-0.0                                                                            | CD<br>1.8<br>0.2                                                                                                                                                     | 0E1<br>21.4<br>14.9                                                                                                 | 0E2<br>18.4<br>1.9                                                                | 6.5<br>0.1                                                                                                                                                      | 19.9<br>8.4                                                                                                                                                                                   | 11.3                                                                                |                                                                                              |                                                                                             |
|                                                                                     | 2.1                                                                                                                 | 1.8                                                                                          | 0 <b>e 3</b>                                                                          | 8.1                                                                                           | 3.1                                                                                                 | 5.1                                                                                           | 1.0                                                                                                                                                                  | 18•1                                                                                                                | 19.1                                                                              | 3.3                                                                                                                                                             | 14.1                                                                                                                                                                                          | (*0                                                                                 |                                                                                              |                                                                                             |
| GLN<br>41<br>57<br>121                                                              | CA<br>0≠0<br>0≠0<br>0≠0                                                                                             | N<br>0.0<br>0.0<br>0.0                                                                       | C<br>1.4<br>0.0<br>0.0                                                                | 0<br>3•3<br>8•9<br>0•8                                                                        | CB<br>4•5<br>C•2<br>4•6                                                                             | CG<br>2.6<br>0.7<br>3.9                                                                       | CD<br>2.5<br>0.0<br>3.3                                                                                                                                              | NUE1<br>37.4<br>1.8<br>49.4                                                                                         | NOE2<br>46.7<br>0.0<br>35.1                                                       | 3.2<br>0.1<br>3.9                                                                                                                                               | 42•1<br>0•9<br>42•3                                                                                                                                                                           | 18.8<br>0.4<br>19:3                                                                 |                                                                                              |                                                                                             |
|                                                                                     | 0.0                                                                                                                 | 0.0                                                                                          | ∩ <b>.</b> 5                                                                          | 4.3                                                                                           | 3.1                                                                                                 | 2.2                                                                                           | 2.0                                                                                                                                                                  | 29.5                                                                                                                | 27.3                                                                              | 2.4                                                                                                                                                             | 28.4                                                                                                                                                                                          | 12.8                                                                                |                                                                                              |                                                                                             |
| HI S<br>15                                                                          | CA<br>2.4                                                                                                           | N<br>0.0                                                                                     | C<br>4.6                                                                              | 0<br>2•4                                                                                      | СВ<br>0+0                                                                                           | CG<br>0.0                                                                                     | ND1<br>0.0                                                                                                                                                           | CE1<br>7.5                                                                                                          | NE2<br>2.7                                                                        | CD2<br>10.2                                                                                                                                                     | 4•4                                                                                                                                                                                           | 1.4                                                                                 | 3•4                                                                                          |                                                                                             |
| LYS<br>1<br>33<br>96<br>97<br>116                                                   | CA<br>9.7<br>0.0<br>0.0<br>0.0<br>1.5<br>0.4                                                                        | N<br>4.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                  | C<br>0.1<br>1.3<br>0.0<br>0.3<br>0.0<br>C.1                                           | 0<br>0.0<br>11.8<br>1.4<br>1.0<br>0.0<br>21.9                                                 | C8<br>3.6<br>1.6<br>0.0<br>3.1<br>1.0<br>0.0                                                        | CG<br>8.7<br>2.6<br>0.0<br>0.0<br>8.3<br>11.6                                                 | CD<br>2.6<br>5.0<br>0.0<br>6.0<br>7.8<br>0.6                                                                                                                         | CE<br>17•2<br>16•3<br>3•9<br>0•7<br>26•6<br>26•4                                                                    | NZ<br>27.9<br>26.4<br>40.1<br>21.9<br>47.4<br>25.8                                | 8.0<br>6.4<br>1.0<br>2.4<br>10.9<br>9.7                                                                                                                         | 27.9<br>26.4<br>40.1<br>21.9<br>47.4<br>25.8                                                                                                                                                  | 12.0<br>10.4<br>8.8<br>6.3<br>18.2<br>12.9                                          |                                                                                              |                                                                                             |
|                                                                                     | 1.9                                                                                                                 | 0.7                                                                                          | 0.3                                                                                   | 6.0                                                                                           | 1.6                                                                                                 | 5.2                                                                                           | 3.7                                                                                                                                                                  | 15.2                                                                                                                | 31.6                                                                              | 6.4                                                                                                                                                             | 31.6                                                                                                                                                                                          | 11.4                                                                                |                                                                                              |                                                                                             |
| AR.G<br>5<br>14<br>21<br>45<br>61<br>68<br>73<br>112<br>114<br>125<br>128           | CA<br>0.0<br>5.7<br>4.2<br>0.0<br>0.1<br>3.5<br>4.8<br>0.0<br>2.6<br>5.2<br>4.7<br>2.8                              | N<br>4.7<br>5.8<br>5.9<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.6<br>1.8 | C<br>0.0<br>5.1<br>0.1<br>0.2<br>1.6<br>0.0<br>0.0<br>1.2<br>1.4<br>2.1<br>1.1        | 0<br>0.0<br>26.6<br>19.3<br>27.1<br>0.0<br>10.4<br>-0.0<br>9.2<br>13.0<br>2.2<br>18.0<br>11.4 | C8<br>10.3<br>0.0<br>0.8<br>15.8<br>0.2<br>18.4<br>6.5<br>0.0<br>3.6<br>16.9<br>19.5<br>8.4         | CG<br>0.0<br>23.9<br>0.2<br>1.5<br>0.7<br>1.5<br>14.7<br>6.3<br>6.1<br>10.8<br>13.1<br>7.1    | CD<br>5.3<br>22.5<br>12.9<br>12.4<br>3.5<br>7.9<br>7.9<br>13.2<br>7.7<br>11.3<br>16.9<br>11.1                                                                        | NE<br>16.1<br>11.8<br>10.5<br>3.5<br>0.0<br>7.0<br>15.1<br>1.2<br>10.9<br>7.7<br>15.0<br>9.0                        | CZ<br>0.0<br>1.7<br>1.8<br>1.9<br>1.7<br>1.8<br>2.9<br>1.8<br>1.9<br>1.9<br>3.7   | NT1<br>0.0 2<br>36.5 3<br>34.1 3<br>25.9 2<br>15.7 2<br>16.2 5<br>36.7 1<br>324.0<br>46.1 5<br>28.2 3                                                           | NT2<br>6.4<br>1.3<br>9.7<br>6.8<br>4.6<br>1.0<br>6.0<br>1.4<br>9.9<br>0.9<br>0.2                                                                                                              | 3.9<br>12.0<br>3.9<br>7.9<br>1.3<br>7.4<br>8.0<br>5.3<br>4.8<br>10.3<br>13.3<br>7.1 | 14.2<br>27.2<br>25.3<br>19.7<br>22.6<br>15.8<br>28.1<br>18.0<br>25.0<br>13.9<br>37.3<br>22.5 | 8.3<br>18.5<br>13.1<br>13.0<br>10.4<br>11.0<br>16.6<br>10.7<br>13.5<br>11.8<br>23.6<br>13.7 |
| H20<br>130                                                                          | 0W1<br>0.0                                                                                                          | 0W2<br>0.0                                                                                   | 0W3<br>0.0                                                                            |                                                                                               |                                                                                                     |                                                                                               |                                                                                                                                                                      |                                                                                                                     |                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                               |                                                                                     |                                                                                              |                                                                                             |

# (c) *Myoglobin*

| GLY  | CA    | N    | c    | n    |
|------|-------|------|------|------|
| 5    | 26.0  | 5.2  | 3.7  | 4.9  |
| 23   | 7.3   | 0.3  | 0.0  | 0.6  |
| 25   | -2.0  | 0.0  | 0.0  | 0.0  |
| 65   | -0.00 | 0.0  | C.0  | 0.0  |
| 73   | 0.3   | 0.0  | C.1  | 0.0  |
| 80   | 2.8   | 0.0  | 0.7  | 12.8 |
| 121  | 25.4  | 4.0  | 4.1  | 27.6 |
| 124  | 23.9  | 2.8  | 0.8  | 0.0  |
| 129  | 20+1  | 0.6  | 0.5  | 0.1  |
| 1 50 | 19.8  | 0.0  | 2.6  | 33.5 |
| 153  | 26.3  | 15.0 | 10.4 | 33.7 |
|      |       |      |      | 46.2 |
|      | 13.8  | 2.5  | 2.1  | 13.3 |

| ALA<br>15<br>19<br>53<br>571<br>74<br>840<br>940<br>125<br>1277<br>1364<br>143<br>144 | CA<br>2.9<br>5.3<br>2.8<br>7.0<br>4.6<br>4.9<br>6.5<br>-0.0<br>0.3<br>0.7<br>0.3<br>0.0<br>0.0<br>3.7<br>2.3    | N<br>0.8<br>0.3<br>1.5<br>1.5<br>1.5<br>0.9<br>0.6<br>0.6<br>0.5<br>2.7<br>0.2<br>0.7<br>0.8 | C<br>0.4<br>0.5<br>0.0<br>1.1<br>1.0<br>C<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0\\ 15.0\\ 33.8\\ 0.0\\ 4.0\\ 21.2\\ 0.0\\ 1.7\\ 14.1\\ 0.0\\ 2.2\\ 0.0\\ 8.9\\ -0.0\\ 0.0\\ -0.0\\ 0.0\\ 4.7\\ 6.2 \end{array}$ | CB<br>32.2<br>35.8<br>17.2<br>43.1<br>33.7<br>12.3<br>19.0<br>31.7<br>0.7<br>0.0<br>11.4<br>48.0<br>4.2<br>0.3<br>5.2<br>2.3<br>5.4<br>2.3<br>5.4<br>2.4<br>3.5<br>7<br>0.0<br>9.6<br>3.6<br>2<br>19.1 | 32,<br>35,<br>17,<br>43,<br>12,<br>19,<br>31,<br>0,<br>0,<br>1,<br>48,<br>0,<br>0,<br>1,<br>36,<br>19, | 28217307704023062                                                                                              |                                                                                                               |                                                                                                                                        |                                                      |                                        |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|
| V4L<br>10<br>13<br>17<br>21<br>66<br>58<br>114                                        | CA<br>8.9<br>-0.0<br>9.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.1                                       | N<br>25•4<br>0•0<br>0•0<br>2•6<br>0•0<br>0•0<br>0•0<br>3•5                                   | C<br>1.7<br>0.0<br>0.0<br>0.0<br>0.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>29+2<br>0+0<br>0+0<br>0+0<br>0+0<br>0+0<br>0+0<br>0+0<br>3+7                                                                                  | CB<br>7.9<br>0.0<br>0.0<br>0.0<br>6.3<br>1.4<br>0.0<br>0.0<br>2.0                                                                                                                                      | CG1<br>48.8<br>9.0<br>0.7<br>-0.0<br>13.7<br>13.4<br>0.0<br>7.8<br>10.6                                | CG2<br>16.5<br>0.0<br>0.7<br>4.2<br>26.1<br>-0.0<br>0.7<br>6.0                                                 | 24.<br>0.<br>0.<br>8.<br>13.<br>C.<br>2.<br>6.                                                                | 4<br>0<br>2<br>2<br>2<br>1<br>6<br>6<br>0<br>9<br>2                                                                                    |                                                      |                                        |
| LFU<br>911932<br>41932459<br>6106776<br>102459<br>102459<br>1024579<br>103579         | CA<br>7 3 3 3 4 5 7 7 9 0 7 3 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 0 7 1 0 0 0 0 | N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                      | C.3.0.70.000<br>0.70.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000 | 0<br>8.5<br>1.1<br>6.2<br>-0.0<br>0.0<br>2.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                   | CB<br>0.0<br>8.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                 | CG<br>0.60<br>0.00<br>-0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                     | CD1<br>0.0<br>9.8<br>4.2<br>-0.0<br>-0.0<br>13.5<br>0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0. | CD2<br>29-2<br>18-2<br>-0-0<br>0-3<br>0-0<br>2-4<br>0-0<br>0-0<br>-0-0<br>-0-0<br>-0-0<br>-0-0<br>12-6<br>0-0 | 0.3<br>9.8<br>7.6<br>0.1<br>3.4<br>0.0<br>0.2<br>0.0<br>0.2<br>0.0<br>0.2<br>0.0<br>1.5<br>1.5<br>0.0<br>0.0<br>0.0<br>0.5<br>6<br>0.0 |                                                      |                                        |
| LE<br>28<br>30<br>75<br>99<br>101<br>107<br>111<br>112<br>142                         | CA<br>2.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                        | N<br>-J-f<br>0-C<br>C-C<br>2+1-<br>C-8<br>0-C<br>2+0<br>0-0<br>0-C<br>0-1                    | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0.0<br>-0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                  | CB<br>-9.9<br>0.1<br>0.0<br>7.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                     | CG2<br>-D-7<br>5-0<br>-D-3<br>12-7<br>-C-0<br>-D-0<br>8-9<br>-D-0<br>3-9                               | CG1<br>0.0<br>0.0<br>0.0<br>10.9<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                     | CD1<br>-9.0<br>1.2<br>0.8<br>0.6<br>-9.0<br>-0.0<br>-7.0<br>1.5<br>-0.0<br>0.4                                | 0.0<br>1.6<br>0.2<br>0.0<br>7.7<br>0.0<br>0.0<br>0.0<br>0.0<br>2.6<br>0.0                                                              |                                                      |                                        |
| 90 ()<br>37<br>88<br>16 ()<br>120                                                     | CA<br>0.0<br>0.0<br>3.3<br>0.5<br>0.9                                                                           | N<br>0.0<br>0.1<br>0.0<br>0.0                                                                | C<br>3.4<br>1.5<br>4.0<br>3.0<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>4.7<br>5.3<br>0.0<br>14.2<br>6.1                                                                                                              | CB<br>24•0<br>24•5<br>19•2<br>25•6<br>23•3                                                                                                                                                             | CG<br>27.2<br>20.8<br>18.0<br>28.5<br>23.6                                                             | CD<br>4.4<br>1.8<br>9.3<br>7.3<br>3.4                                                                          | 18.<br>15.<br>12.<br>20.                                                                                      | 5<br>7<br>5<br>4<br>8                                                                                                                  |                                                      |                                        |
| MET<br>55<br>131                                                                      | CA<br>n+0<br>0+0<br>n+1                                                                                         | N<br>0.0<br>C.3<br>0.0                                                                       | C<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0+0<br>0+7<br>0+7                                                                                                                             | CB<br>0.0<br>0.0                                                                                                                                                                                       | CG<br>0.0<br>0.0                                                                                       | SD<br>0.0<br>-0.0                                                                                              | CE<br>5.0<br>-0.0                                                                                             | 1.2<br>0.0<br>0.6                                                                                                                      |                                                      |                                        |
| PHE<br>33<br>43<br>46<br>106<br>123<br>138                                            | CA<br>0+0<br>2+1<br>7+0<br>0+0<br>0+0<br>0+0                                                                    | N<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                  | C<br>C.1<br>0.0<br>0.0<br>C.0<br>C.0<br>C.0<br>C.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>5.5<br>0.0<br>0.7<br>0.2<br>0.9<br>1.]                                                                                                        | CB<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>-0.0                                                                                                                                                          | CG<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                           | CD1<br>0.0<br>0.0<br>0.3<br>0.0<br>0.0<br>0.0<br>0.0                                                           | CE1<br>-3.0<br>0.0<br>0.5<br>0.4<br>0.0<br>-3.0<br>0.1                                                        | CZ CE2<br>-0.0 -0.0<br>-0.0 -0.0<br>0.0 -0.0<br>11.1 7.1<br>0.0 0.0<br>0.0 0.0<br>1.9 1.2                                              | CD2<br>0.0<br>0.0<br>C:0<br>2.3<br>0.0<br>C.0<br>0.4 | 0.0<br>0.0<br>3.0<br>0.0<br>0.0<br>0.0 |

## B. LEE AND F. M. RICHARDS

0.5 C.3 C.4

| TR Y<br>7<br>14                                                                 | CA<br>0.0<br>0.0                                                                | N<br>0.0<br>0.0                                                                                     | C<br>0.6<br>0.0                                                                                                                                                                    | 0.0<br>0.0<br>0.0                                                                              | CB<br>0.1<br>0.0                                                                                           | CG<br>0.0<br>0.0                                                                                            | CU1<br>1.9<br>0.9                                                                                           | NE<br>3•3<br>0•0                                                                                                  | CE1<br>0.0<br>0.0                                                                                                                                | CZ1<br>0+1 -<br>1+7                                                                                                                           | сн<br>0.)<br>0.0 -                                                                                           | CZ2<br>0.0<br>0.0 -                                                                                       | CE 2<br>0.0<br>0.0                                                                    | 002<br>0.0<br>0.0   | 0.2<br>0.3        | 3.3<br>C.O |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|-------------------|------------|
|                                                                                 | 0.0                                                                             | 0.0                                                                                                 | 0.3                                                                                                                                                                                | 0.0                                                                                            | c.o                                                                                                        | 0.0                                                                                                         | 1.4                                                                                                         | 1.7                                                                                                               | 0.0                                                                                                                                              | 1.0                                                                                                                                           | 0.0                                                                                                          | 0.0                                                                                                       | 0.0                                                                                   | 0.0                 | 0.3               | 1.7        |
| SER<br>35<br>58<br>92<br>108<br>117                                             | CA<br>5•5<br>3•8<br>8•0<br>3•3<br>-0•0<br>2•4                                   | N<br>4.1<br>0.0<br>0.3<br>0.5<br>0.0<br>0.0                                                         | C<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                 | 0<br>0.0<br>19.3<br>0.0<br>0.0<br>27.4<br>7.8                                                  | C3<br>21.7<br>5.2<br>3.2<br>10.4<br>0.0<br>21.6                                                            | 0H<br>9.0<br>12.5<br>7.7<br>0.0<br>-0.2<br>14.9                                                             | 21<br>5<br>3<br>10<br>21                                                                                    | .7 9<br>.2 12<br>.2 7<br>.4 0<br>.0 0<br>.5 14                                                                    | 0 15<br>5 8<br>7 5<br>0 5<br>0 0<br>9 18                                                                                                         | - 3<br>- 8<br>- 4<br>- 2<br>- 0<br>- 3                                                                                                        |                                                                                                              |                                                                                                           |                                                                                       |                     |                   |            |
|                                                                                 | 201                                                                             | <i>0</i> ,∎.0                                                                                       | (*1                                                                                                                                                                                | 1.0                                                                                            | 10+4                                                                                                       | 1.00                                                                                                        | 10                                                                                                          | • 4 1                                                                                                             | • 5 0.                                                                                                                                           | • •                                                                                                                                           |                                                                                                              |                                                                                                           |                                                                                       |                     |                   |            |
| THR<br>39<br>51<br>67<br>70<br>95                                               | CA<br>9.0<br>1.3<br>1.7<br>2.4<br>0.0                                           | N<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                | C<br>C.0<br>C.0<br>C.C<br>C.7<br>2.4                                                                                                                                               | 0<br>0.0<br>0.0<br>4.1<br>5.0<br>27.3                                                          | CB<br>-0.0<br>5.1<br>0.0<br>3.4<br>5.3                                                                     | CG<br>2.7<br>31.7<br>8.8<br>16.7                                                                            | 0H<br>0.0<br>36.4<br>14.5<br>46.4<br>16.1                                                                   | 0.<br>3.<br>15.<br>6.<br>10.                                                                                      | 0 0.<br>9 36<br>9 14<br>1 46<br>7 15                                                                                                             | 0 0.0<br>4 14.7<br>5 15.4<br>4 19.5<br>1 12.5                                                                                                 |                                                                                                              |                                                                                                           |                                                                                       |                     |                   |            |
|                                                                                 | 1.1                                                                             | 0.0                                                                                                 | C.6                                                                                                                                                                                | 7.3                                                                                            | 2.7                                                                                                        | 11.9                                                                                                        | 22.7                                                                                                        | 7.                                                                                                                | •3 22                                                                                                                                            | •7 12.4                                                                                                                                       |                                                                                                              |                                                                                                           |                                                                                       |                     |                   |            |
| TYR<br>103<br>146<br>151                                                        | CA<br>0.0<br>0.0<br>2.7                                                         | N<br>0.0<br>0.0                                                                                     | C<br>C•0<br>0•0<br>2•3                                                                                                                                                             | 0<br>0.0<br>0.0<br>6.5                                                                         | CB<br>0.0<br>0.0<br>4.0                                                                                    | CG<br>0+0<br>0+3<br>0+3                                                                                     | CD1<br>0.0<br>0.5<br>16.2                                                                                   | CE1<br>0.7<br>5.4<br>14.3                                                                                         | CZ<br>0.0<br>0.0<br>1.8                                                                                                                          | CE2<br>4.9<br>0.0<br>1.0                                                                                                                      | CD2<br>0.0 2<br>0.0<br>0.0 3                                                                                 | OH<br>2.0<br>0.2<br>1.1                                                                                   | 0.8<br>0.8<br>5.3                                                                     | 22.0<br>0.2<br>31.1 | 3.4<br>0.8<br>8.5 |            |
|                                                                                 | 0 <b>•</b> 0                                                                    | ¢•0                                                                                                 | 0.8                                                                                                                                                                                | 2•2                                                                                            | 1.3                                                                                                        | 0.0                                                                                                         | 5.6                                                                                                         | 6.8                                                                                                               | 0.6                                                                                                                                              | 2.0                                                                                                                                           | 0.0 1                                                                                                        | 7.7                                                                                                       | 2.3                                                                                   | 17.7                | 4.3               |            |
| ASP<br>27<br>44<br>60<br>126<br>141                                             | CA<br>1.5<br>0.0<br>0.0<br>1.0<br>3.4<br>0.2                                    | N<br>0.3<br>0.0<br>1.7<br>1.7<br>0.9<br>0.0                                                         | C<br>0.0<br>0.1<br>1.3<br>0.0<br>0.0<br>0.1                                                                                                                                        | 0'<br>2.7<br>1.3.0<br>0.0<br>5.9<br>7.8                                                        | CB<br>14.9<br>0.0<br>16.4<br>14.2<br>22.2<br>5.7                                                           | CG<br>2.1<br>1.8<br>3.1<br>1.3<br>1.3<br>2.1                                                                | 0D1<br>15.5<br>32.5<br>14.7<br>13.6<br>40.0<br>18.9                                                         | 002<br>18.4<br>11.6<br>43.4<br>14.8<br>21.9<br>12.1                                                               | 8.<br>0.<br>9.<br>7.<br>11.<br>3.                                                                                                                | 5 16.9<br>9 22.1<br>8 29.0<br>7 14.2<br>7 30.9<br>9 15.5                                                                                      | 12.7<br>11.5<br>19.4<br>11.0<br>21.3<br>9.7                                                                  |                                                                                                           |                                                                                       |                     |                   |            |
|                                                                                 | 1.9                                                                             | <b>ۥ</b> 8                                                                                          | 0.3                                                                                                                                                                                | 4.9                                                                                            | 12:2                                                                                                       | ' <b>1</b> •7                                                                                               | 22.5                                                                                                        | 20.4                                                                                                              | 7.                                                                                                                                               | 1 21.5                                                                                                                                        | 14.3                                                                                                         |                                                                                                           |                                                                                       |                     |                   |            |
| ASN<br>122<br>132                                                               | CA<br>3.1.<br>0.0                                                               | N<br>0.0<br>0.0                                                                                     | C<br>D•0<br>0•0                                                                                                                                                                    | 0<br>14.8<br>0.0                                                                               | CB<br>-0.0<br>3.4                                                                                          | CG<br>0.0<br>1.8                                                                                            | NOD1<br>32.4<br>14.8                                                                                        | NO D2<br>12.3<br>22.8                                                                                             | 0.                                                                                                                                               | 0 22.4<br>6 18.8                                                                                                                              | 11.2<br>10.7                                                                                                 |                                                                                                           |                                                                                       |                     |                   |            |
|                                                                                 | 1.5                                                                             | 0.0                                                                                                 | 0.0                                                                                                                                                                                | 7.4                                                                                            | 1.7                                                                                                        | 0.9                                                                                                         | 23.6                                                                                                        | 17.5                                                                                                              | 1.                                                                                                                                               | 3 20.6                                                                                                                                        | 10.9                                                                                                         |                                                                                                           |                                                                                       |                     |                   |            |
| GLU<br>4<br>13<br>38<br>41<br>54<br>59<br>83<br>85<br>105<br>109<br>136<br>148  | CA<br>C.O<br>0.0<br>4.3<br>0.1<br>0.0<br>2.5<br>1.1<br>0.0<br>0.5<br>9.8        | N<br>7.4<br>0.0<br>0.0<br>1.5<br>0.0<br>1.7<br>0.2<br>4.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.3 | C<br>0.6<br>0.0<br>1.2<br>0.0<br>0.4<br>0.0<br>0.2<br>3.2<br>0.3<br>0.0<br>1.6<br>0.6<br>0.1                                                                                       | 0<br>1.9<br>0.0<br>27.2<br>8.1<br>0.0<br>3.8<br>0.0<br>2.5<br>8.2<br>0.0<br>2.0<br>3.5<br>31.0 | CB<br>21.3<br>0.0<br>3.9<br>18.5<br>4.6<br>10.7<br>5.0<br>16.0<br>19.1<br>6.9<br>2.99<br>9.5<br>7.1<br>7.2 | CG<br>26.1<br>8.1<br>9.6<br>0.1<br>20.0<br>2.1<br>10.8<br>21.8<br>20.1<br>0.0<br>0.4<br>15.7<br>0.0<br>13.3 | CD<br>2.5<br>0.0<br>2.1<br>1.0<br>2.0<br>2.3<br>1.9<br>2.0<br>1.9<br>2.0<br>1.0<br>1.8<br>1.1<br>0.8<br>1.2 | 0E1<br>26.2<br>3.4<br>16.0<br>19.7<br>22.1<br>31.8<br>43.2<br>32.2<br>8.6<br>13.1<br>26.8<br>41.1<br>33.0<br>27.7 | 0E2<br>14.3<br>23.7<br>21.8<br>10.4<br>48.9<br>17.5<br>4.2<br>9.5<br>37.8<br>29.5<br>37.8<br>29.5<br>14.5<br>29.8<br>14.5<br>0.9<br>29.8<br>19.6 | 16.7<br>2.7<br>4.9<br>6.5<br>8.9<br>5.0<br>5.7<br>13.3<br>13.8<br>2.6<br>1.7<br>9.1<br>2.6<br>7.2                                             | 20.3<br>13.5<br>18.9<br>15.1<br>35.5<br>24.6<br>23.7<br>20.8<br>23.2<br>21.3<br>20.6<br>21.0<br>31.4<br>23.6 | 18.1<br>7.9<br>10.5<br>9.9<br>19.5<br>12.9<br>12.9<br>16.3<br>17.5<br>10.1<br>9.3<br>13.8<br>14.1<br>13.8 |                                                                                       |                     |                   |            |
|                                                                                 | 1.4                                                                             | 1.2                                                                                                 | 0.6                                                                                                                                                                                | 6.2                                                                                            | 9.4                                                                                                        | 10.5                                                                                                        | 1.5                                                                                                         | 24.6                                                                                                              | 20.2                                                                                                                                             | 7.2                                                                                                                                           | 22.4                                                                                                         | 13.3                                                                                                      |                                                                                       |                     |                   |            |
| GL N<br>26<br>91<br>128<br>152                                                  | CA<br>0.0<br>0.0<br>0.0<br>0.0<br>1.8                                           | N<br>0.5<br>0.0<br>J.0<br>0.0<br>7.2                                                                | C<br>1.2<br>C.0<br>0.2<br>0.2<br>1.9                                                                                                                                               | 0<br>0.2<br>0.0<br>0.0<br>0.0<br>17.0                                                          | CB<br>11.6<br>0.0<br>6.9<br>0.9<br>2.2                                                                     | CG<br>7.9<br>1.0<br>2.4<br>9.7<br>1.0                                                                       | CD<br>3.8<br>1.4<br>0.3<br>1.8<br>1.8                                                                       | NDE1<br>45.9<br>C.7<br>17.6<br>31.2<br>10.1                                                                       | NOE2<br>44.3<br>15.9<br>25.2<br>12.7<br>19.0                                                                                                     | 7.7<br>0.8<br>3.2<br>4.2<br>1.7                                                                                                               | 45.1<br>8.3<br>21.4<br>21.9<br>14.6                                                                          | 22.7<br>3.8<br>10.5<br>11.3<br>6.8                                                                        |                                                                                       |                     |                   |            |
|                                                                                 | 0.4                                                                             | 1.5                                                                                                 | 0.7                                                                                                                                                                                | 3.5                                                                                            | 4.3                                                                                                        | 4.4                                                                                                         | 1.8                                                                                                         | 21.1                                                                                                              | 23.4                                                                                                                                             | 3.5                                                                                                                                           | 22.3                                                                                                         | 11.0                                                                                                      |                                                                                       |                     |                   |            |
| HI S<br>12<br>24<br>36<br>48<br>64<br>81<br>82<br>93<br>97<br>113<br>116<br>119 | CA<br>4.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.7<br>3.3<br>0.0<br>0.0 | N<br>0.8<br>0.0<br>1.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0.0<br>0.0<br>10.3<br>0.0<br>7.0<br>0.0<br>0.2<br>4.7<br>0.0<br>0.9<br>0.0                | CB<br>3.3<br>0.0<br>24.5<br>0.0<br>6.6<br>0.0<br>-0.0<br>0.0<br>1.5<br>3.3<br>0.0                          | CG<br>2+0<br>0+0<br>2+9<br>0+0<br>1+9<br>C+0<br>-0+0<br>0+0<br>0+1<br>1+8<br>0+0                            | ND1<br>19.8<br>0.0<br>4.0<br>8.9<br>0.8<br>11.3<br>-0.0<br>7.5<br>21.0<br>1.2<br>0.0                        | CE1<br>23.2<br>1.9<br>18.1<br>11.8<br>0.1<br>28.6<br>-0.0<br>-0.0<br>8.0<br>23.4<br>21.6<br>0.4                   | NE2<br>9.6<br>0.0<br>11.8<br>19.1<br>0.0<br>30.7<br>0.0<br>0.1<br>14.1<br>28.3<br>11.7                                                           | $\begin{array}{c} CD 2 \\ 10.6 \\ -0.0 \\ 1.2 \\ 18.0 \\ -3.0 \\ 28.0 \\ 1.7 \\ -0.0 \\ 28.0 \\ 1.7 \\ 0.0 \\ 3.9 \\ 17.0 \\ 5.0 \end{array}$ | 9.8<br>0.5<br>4.8<br>14.3<br>0.0<br>16.3<br>0.4<br>0.0<br>2.0<br>7.2<br>10.9<br>1.4                          | 14.7<br>0.0<br>7.9<br>14.0<br>0.4<br>21.0<br>0.0<br>0.0<br>0.0<br>3.8<br>17.5<br>14.8<br>5.9              | 11.4<br>0.3<br>5.9<br>14.2<br>0.2<br>17.9<br>0.3<br>0.0<br>2.6<br>10.6<br>12.2<br>2.9 |                     |                   |            |
|                                                                                 | 1.3                                                                             | C.3                                                                                                 | 0.0                                                                                                                                                                                | 1.9                                                                                            | 3.3                                                                                                        | 0.7                                                                                                         | 6.2                                                                                                         | 11.4                                                                                                              | 10.5                                                                                                                                             | 7.1                                                                                                                                           | 5.6                                                                                                          | 8.3                                                                                                       | 6.5                                                                                   |                     |                   |            |

| SOL           | VEI         | NT    | AUC        | ESS        | IRIT       | TT Y  | OF        | GR      | 00 P   | 'S IN   | <b>P</b> R | OTE  | INS  |      |
|---------------|-------------|-------|------------|------------|------------|-------|-----------|---------|--------|---------|------------|------|------|------|
|               | <b>C 1</b>  | м     | ~          |            | <b>C</b> 0 | 10    | ¢ D       | CE      | N: 7   |         |            |      |      |      |
|               | 17          | ່ດີກ  | ົ້         | 20         | 0.0        | 15.0  | 0.6       | 12.2    | 9.8    | 6.9     | 9.8        | 7.5  |      |      |
| 10            | 1.1         | 0.0   | 2 5        | .22.9      | 8.6        | 10.0  | 3.8       | 10.8    | 33.8   | 5.8     | 33.8       | 11.4 |      |      |
| 54            | 2 2         | 0.0   | 6.0        | 14 8       | 0.0        | 0.3   | 2 2       | 24.6    | 9.7    | 6.8     | 9.7        | 7.4  |      |      |
| 42            | 2.4.2       | 0.7   | 6.6        | 17.0       | 4.5        | 1.5   | 10.1      | 4.3     | 40.2   | 5.6     | 40.2       | 12.5 |      |      |
| 50            | 0.1         | 0.0   | 0.0        | 27.7       | 12.3       | 18.6  | 21.7      | 1.1     | 28.1   | 13.4    | 28.1       | 16.4 |      |      |
| 54            | 0.0         | 0.0   | 0.6        | 11.5       | 0.5        | 3.4   | 18.5      | 5.6     | 51.4   | 9.2     | 51.4       | 17.7 |      |      |
| 62            | <b>6</b> .n | 0.0   | 0.0        | 0.0        | 2.2        | 0.0   | 7.6       | 0.1     | 42.6   | 2.5     | 42.6       | 10.5 |      |      |
| 63            | 2 5         | 0.5   | 0.1        | n. 9       | 3.3        | 10.1  | 13.0      | 20.3    | 55.2   | 11.7    | 55.2       | 20.4 |      |      |
| 77            | 0.0         | 0.0   | 0.0        | 19.7       | 12.1       | 1.6   | 17.4      | 4.9     | 29.5   | 9.0     | 29.5       | 13.1 |      |      |
| 78            | 1.6         | 0.0   | 1.3        | 7.6        | 0.0        | 13.3  | 2.4       | 20.8    | 14.3   | 9.1     | 14.3       | 10.2 |      |      |
| 79            | 0.0         | 0.0   | 0.0        | 11.1       | 5.1        | 0.0   | 13.2      | 2.4     | 29.8   | 5.2     | 29.8       | 10.1 |      |      |
| 87            | 1.2         | 0.5   | 0.0        | 0.0        | 9.9        | 4.2   | 17.2      | 6.9     | 34.0   | 9.5     | 34.0       | 14.4 |      |      |
| 96            | 3.5         | 0.0   | 0.8        | 23.7       | 3.5        | 10.6  | 15.1      | 25.7    | 55.3   | 13.7    | 55.3       | 22.0 |      |      |
| 98            | 1.1         | 0.0   | 3.3        | 4.3        | 4.1        | 5.8   | 18.3      | 25.3    | 55.5   | 13.6    | 55.5       | 22.0 |      |      |
| 102           | 0.5         | 1.9   | 0.0        | 0.0        | 10.4       | 14.5  | 8.4       | 11.6    | 35.8   | 11.2    | 35.8       | 16.1 |      |      |
| 133           | 0.1         | 0.0   | 0.0        | 2.0        | 1.4        | 9.5   | 4.7       | 22.4    | 30.4   | 9.5     | 30.4       | 13.7 |      |      |
| 140           | 2.9         | 0.6   | 0.1        | 3.7        | 2.4        | 8.7   | 26.2      | 26.5    | 43.3   | 15.9    | 43.3       | 21.4 |      |      |
| 145           | 0.7         | 0.7   | 0.0        | 0.0        | 3.0        | 2.7   | 3.9       | 0.0     | 2.0    | 2.4     | 2.0        | 2.3  |      |      |
| 147           | 0.3         | 0.0   | 0.9        | 9.4        | 0.3        | 16.8  | 11.7      | 25.7    | 56.4   | 13.6    | 56.4       | 22.2 |      |      |
|               | • -         |       |            |            |            |       |           |         |        |         |            |      |      |      |
|               | 1.0         | 0.2   | 0.5        | 8.5        | 5.0        | 7.2   | 11.4      | 13.2    | 34.6   | 9.2     | 34.6       | 14.3 |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
| AR G          | CA          | N     | C          | 0          | C B        | CG    | CD        | NE      | СZ     | NT1 M   | JT 2       |      |      |      |
| 31            | 1.5         | 1.4   | 0.1        | 0.0        | 5.1        | 1.2   | 2.7       | 4.3     | 1.6    | 33.6 31 | • 4        | 2.6  | 23+1 | 11.4 |
| 45            | 4.0         | 1.3   | 0.0        | 3.5        | 15.4       | 0.0   | 11.6      | 3.0     | 1.8    | 12.4 10 | • 3        | 7.2  | 8.5  | 7.8  |
| 118           | 1.5         | 0.0   | 0.5        | 18.7       | 0.0        | 15.5  | 0.1       | 2.7     | 1.2    | 19.5 12 | • 6        | 4.4  | 11.6 | 7.5  |
| 139           | 0.0         | 0.0   | 1.2        | 0.0        | 5.0        | 0.0   | 3.2       | 0.0     | 6•3    | 16.5    | •7         | 2.1  | 5.1  | 3.8  |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      | - ·  |
|               | 1.7         | 0.7   | 0.4        | 5.6        | 6.4        | 4.4   | 4.4       | 2.5     | 1.2    | 20.5 14 | +.0        | 4.1  | 12.3 | 1.0  |
|               |             | •     |            |            |            |       |           |         |        |         |            |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
| HEM           | FE          | OW    | CHI        | CHZ        | CH3 I      | CH4   |           |         |        |         |            |      |      |      |
| 154           | 0.0         | -0.0  | · 0• 0     | .0.0       | 0.0        | 0.0   |           |         |        |         |            |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
| 00.0          |             | ·     | 6.2        | <b>C</b> 2 | e          | ·     | ~ ~ ~     | - 0     |        | 1 02    |            |      |      |      |
| PPK           | NI O        |       |            | 0.5        | 0 0 1      |       |           | - 0<br> | 1 0 10 | L 10 C  |            |      |      |      |
| 155           | 0.0         | 0.0   | N# 0       | 0.0        | 0.0 1:     |       | 5 • 5 Z   | 746     | 103 10 | 00 1Va: | ,          |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
|               | 41          | ~ 1   |            | 6.2        | r. 1       | - 14  | <b>~ </b> | - o     |        |         |            |      |      |      |
| уР R<br>1 E 4 | - n n .     | -0.0  | -00        | 60         |            |       |           | 5.0     |        |         |            |      |      |      |
| 100           | 0.0         | -0.0  | -0.0       | 0.0        | 0.0        |       | 0.0       |         |        |         |            |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
| 101           | AI          | 6.1   | <b>C</b> 2 | C 2        | 64 1       | - M - | r 4 1     | C A     |        |         |            |      |      |      |
| 157           | 0.0         | 0.0   | -0.0       | -0-0       | -0.0       | 5-0 - | 0.0       | 5.0     |        |         |            |      |      |      |
| 1.71          | 0.0         |       |            |            | ~          |       |           |         |        |         |            |      |      |      |
|               |             |       |            |            |            |       |           |         |        |         |            |      |      |      |
| PPL           | N           | C1    | C2         | С3         | C4 (       | CM ·  | CA I      | 63      | cc o   | 1 02    |            |      |      |      |
| 153           | 0.0         | 0.0   | 0.0        | 0.0        | 0.0        | 4.5   | 2.9       | 0.0     | 0.0 23 | .3 18.0 | )          |      |      |      |
| • • •         |             | ~ • • |            |            | • •        |       |           |         |        |         |            |      |      |      |

Residues of the same kind are grouped together. The last column in each row gives the average over the side-chain atoms. For polar residues, separate averages over the side-chain non-polar and polar atoms are given in the third and the second from the last columns, respectively. Column averages are given in the last row for each class of residues. For lysozyme, the three "buried" water molecules are given the residue name  $H_2O$  and included in the computation. The heme group of myoglobin is included in the computation. The atoms of the heme are divided into 5 groups and given the names HEM, PPR, VPR, VPL, and PPL. The groups PPR, VPR, VPL and PPL are those labeled 1, 2, 3 and 4, respectively, in Watson (1969).

one elongated cavity. The cavity J, on the other hand, is a split double cavity joined by a narrow "pass". It should be noted that the atoms listed for a given cavity may not be a complete list of all the atoms that form the boundary of the cavity. If an atom forms a portion of the boundary of a cavity that lies entirely in between two slicing sections, that atom will not be found by the method described in this paper. It should also be noted that the cavities that are confined entirely to a region between two slicing planes are not detected by the present procedure.

The total accessible surface areas are calculated to be 7010 Å<sup>2</sup>, 6710 Å<sup>2</sup>, and 8020 Å<sup>2</sup> respectively for ribonuclease-S, lysozyme, and myoglobin. If each atom in a macromolecule occupies the same volume, the total area, A, is expected to be related to the number of atoms, N, by  $A = KN^{2/3}$ , where K depends on the shape of the molecule. When the numbers of non-hydrogen atoms are substituted for N, K becomes 72 Å<sup>2</sup>, 67 Å<sup>2</sup>, and 69 Å<sup>2</sup> respectively for the above three proteins. The agreement between these numbers is a reflection of the compact over-all shapes that they have.

The contributions made to the total accessible surface area by four different types

## TABLE 6

# Cavities in ribonuclease-S, lysozyme and myoglobin

|                                                                                                 |                                                                          |                                                              | Ribor                                                                                                                     | uclease-                                                                                      | s                                                                                           |                                               |                                                  |                                                     |                                                              |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| Ca<br>*VAL 54<br>VAL 57<br>ILE 106<br>ILE 106<br>VAL 108<br>vol. =                              | avity A<br>CG2<br>CG1<br>CG1<br>CG1<br>CG1<br>= 0.029 Å                  | 0.22<br>0.13<br>0.04<br>0.18<br>0.14                         | Cd<br>PHE 8<br>VAL 47<br>VAL 47<br>VAL 54<br>*VAL 54<br>*VAL 54<br>ILE 106<br>VAL 108<br>PHE 120<br>vol. =                | avity B<br>CZ<br>CG1<br>CG2<br>CG1<br>CG2<br>CG1<br>CG1<br>CG1<br>CE2<br>0.375 Å <sup>3</sup> | 0-13<br>0-84<br>0-19<br>0-03<br>1-05<br>0-81<br>0-360<br>0-11                               | VAL<br>CYS<br>VAL<br>V                        | 54<br>58<br>108<br>ol. =                         | avity C<br>0<br>SG<br>CG2<br>0.0003 Å               | 0.03<br>0.01<br>0.01                                         |
|                                                                                                 |                                                                          |                                                              | Ly                                                                                                                        | 80zyme                                                                                        |                                                                                             |                                               |                                                  |                                                     |                                                              |
| Can<br>ALA 31<br>PHE 34<br>ALA 110<br>CYS 115<br>vol. =                                         | vity A<br>CA<br>CB<br>C<br>SG<br>= 0.017 Å                               | 0·14<br>0·19<br>0·13<br>0·08                                 | Ca<br>LEU 8<br>MET 12<br>MET 12<br>MET 12<br>ALA 32<br>ILE 55<br>ILE 55<br>ILE 55<br>LEU 56<br>ILE 88<br>VAL 92<br>vol. = | wity B<br>CD2<br>CG<br>SD<br>CE<br>CB<br>CG1<br>CG2<br>CD1<br>CD2<br>CD1<br>CG1<br>= 1.327 J  | 0.70<br>0.16<br>1.49<br>0.55<br>0.10<br>0.39<br>2.44<br>0.76<br>0.27<br>0.96<br>0.62<br>4.3 | ALA<br>ALA<br>GLU<br>LEU<br>TRP               | Co<br>31<br>31<br>35<br>56<br>108<br>vol. =      | avity C<br>C<br>CB<br>CG<br>CD2<br>CD1<br>= 00.01 Å | 0.01<br>0.02<br>0.004<br>0.02<br>0.07<br>13                  |
| Ca<br>TRP 28<br>TRP 28<br>ALA 31<br>LEU 56<br>LEU 56<br>MET 105<br>TRP 108<br>TRP 108<br>vol. = | wity D<br>CE2<br>CZ2<br>CB<br>CG<br>CD2<br>CE<br>CE1<br>CZ1<br>= 0.017 Å | 0.01<br>0.02<br>0.03<br>0.01<br>0.18<br>0.21<br>0.14<br>0.05 |                                                                                                                           |                                                                                               |                                                                                             | ASN<br>*ASN<br>ARG<br>*SER                    | Ca<br>65<br>74<br>73<br>72<br>vol. =             | ivity E<br>CA<br>CB<br>O<br>OH<br>= 0.002.          | 0.03<br>0.02<br>0.03<br>0.02<br>Å <sup>3</sup>               |
|                                                                                                 |                                                                          |                                                              | My                                                                                                                        | oglobin                                                                                       |                                                                                             |                                               |                                                  |                                                     |                                                              |
| Ca                                                                                              | wity A                                                                   |                                                              | Ca                                                                                                                        | wity B                                                                                        |                                                                                             |                                               | Ca                                               | wity D                                              |                                                              |
| LEU 89<br>HIS 93<br>HIS 93<br>HIS 93<br>HIS 93<br>HIS 93<br>LEU 104                             | ČD1<br>CB<br>CG<br>ND1<br>CE1<br>CD2<br>CD1                              | 0.93<br>1.31<br>0.95<br>0.27<br>0.05<br>0.06<br>1.35         | ILE 101<br>LEU 104<br>*TYR 146<br>vol. =                                                                                  | CD1<br>CG<br>OH<br>0.0002.                                                                    | 0·01<br>0·02<br>0·01<br>Å <sup>3</sup>                                                      | LEU<br>LEU<br>PHE<br>PHE<br>THR<br>PHE<br>PHE | 29<br>32<br>33<br>33<br>39<br>43<br>43<br>107    | CD1<br>CD1<br>CE1<br>CZ<br>CB<br>CE2<br>CZ<br>CZ    | 2·50<br>2·01<br>0·95<br>0·01<br>0·01<br>2·27<br>0·07<br>0·51 |
| LEO 104<br>ILE 142<br>ILE 142<br>*TYR 146<br>VPR 156<br>VPR 156<br>vol.                         | CD2 CG2 CD1 OH C1 C2 = 0.853                                             | 0.11<br>0.96<br>0.03<br>0.46<br>0.14<br>Å <sup>3</sup>       | C<br>LEU 89<br>LEU 89<br>ALA 90<br>HIS 93<br>ILE 142<br>ILE 142<br>vol. =                                                 | avity C<br>C<br>CD1<br>CA<br>CB<br>CG2<br>CD1<br>= 0.007                                      | 0.02<br>0.04<br>0.14<br>0.03<br>0.12<br>4 <sup>3</sup>                                      | HEM<br>VPL<br>VPL<br>VPL<br>VPL<br>VPL        | 154<br>157<br>157<br>157<br>157<br>157<br>vol. = | OW<br>C2<br>C3<br>C4<br>CA<br>= 1.781               | 0.49<br>0.27<br>0.96<br>0.08<br>0.18<br>43                   |

|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Myoglobi       | n <i>—contin</i> | nued         |               |               |              |
|----------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------------|---------------|---------------|--------------|
| Cav            | itu E                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ca             | vity F           |              | Ca            | wity G1       |              |
| LEU 29         | CD1                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEU 29         | ŏ                | 0.01         | <b>GLY 25</b> | ČA            | 0.42         |
| LEU 29         | CD2                  | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEU 29         | CD1              | 0.01         | ILE 28        | CB            | 0.32         |
| PHE 33         | CE2                  | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEU 32         | CB               | 0.01         | ILE 28        | CG2           | 0.45         |
| PHE 33         | CZ                   | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vol. =         | • 0.0002         | Åз           | LEU 29        | CG            | 0.39         |
| PHE 43         | CZ                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  |              | LEU 29        | CD1           | 0.23         |
| PHE 46         | CE2                  | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | GLY 65        | CA            | 0.04         |
| LEU 61         | CG                   | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | <b>VAL 68</b> | CG2           | 0.79         |
| HIS 64         | CD2                  | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C              | avity G2         |              | LEU 69        | CD1           | 0.51         |
| vol. = 0       | )•470 Å <sup>3</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 28         | CĞ2              | 0.44         | vol.          | = 0.371       | Åз           |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VAL 68         | CG2              | 0.61         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU 69         | CD1              | 0.30         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 107        | CD1              | 0.18         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 111        | CD1              | 0.60         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>VPR 156</b> | CB               | 0.01         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vol.           | = 0.178          | Å3           |               |               |              |
| Car            | nity H               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |              | Ca            | wity I        |              |
| <b>LEU 72</b>  | ČDI                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | TRP 7         | $\mathbf{CH}$ | 1.75         |
| <b>LEU 72</b>  | CD2                  | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | ILE 75        | С             | 0.22         |
| ILE 107        | CG2                  | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | ILE 75        | 0             | 0.07         |
| SER 108        | $\mathbf{CA}$        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |              | ILE 75        | CG2           | 1.20         |
| SER 108        | $\mathbf{OH}$        | 2·19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Cavity J         |              | <b>LEU 76</b> | CA            | 0.05         |
| ILE 111        | CD1                  | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>TRP 14</b>  | CZ2              | 5.48         | <b>LEU 76</b> | CD1           | 2.08         |
| LEU 135        | CD1                  | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>TRP 14</b>  | CE2              | 0.42         | HIS 82        | ND1           | 1.38         |
| PHE 138        | CE1                  | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>VAL</b> 17  | CG1              | 0.44         | HIS 82        | CE1           | <b>0</b> ∙08 |
| <b>VPR</b> 156 | CB                   | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *VAL 17        | CG2              | 1.07         | ALA 134       | 0             | 1.99         |
| vol. =         | 1·754 Å <sup>3</sup> | L Contraction of the second seco | HIS 24         | CD2              | 0.12         | ALA 134       | CB            | 0.03         |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 28         | CD1              | 2.87         | *LEU 137      | CD1           | 0.58         |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU 69         | CD1              | 0.08         | PHE 138       | CB            | 0.83         |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *LEU 69        | CD2              | 0.24         | vol. =        | 2·229 Å       | 3            |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU 72         | CD1              | 1.02         |               |               |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>LEU 76</b>  | CD2              | 0.28         |               |               |              |
| Cavity K       | C                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 111        | CG2              | 2.85         | Cavity        | L             |              |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE 111        | CD1              | 0.33         |               |               |              |
| *LEU 9         | 0                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEU 115        | CD1              | $2 \cdot 15$ | *HIS 12       | CD2           | 0·06         |
| VAL 10         | CA                   | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEU 115        | CD2              | 0.73         | *VAL 13       | CG1           | 0.23         |
| *VAL 13        | CG1                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MET 131        | SD               | 1.83         | *LYS 16       | $\mathbf{CD}$ | 0.12         |
| ALA 127        | 0                    | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MET 131        | $\mathbf{CE}$    | 0.12         | *LYS 16       | NZ            | 0.05         |
| vol. = 0       | ·016 Å <sup>3</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU 135        | $\mathbf{CE}$    | 0.28         | *ASN 122      | 0             | 0.11         |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU 135        | CD2              | 0.01         | ASN 122       | CB            | 0.12         |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vol. =         | 2·854 Å          | 3            | vol. =        | 0.031 Å       | 3            |

TABLE 6—continued

For each cavity, the names of atoms that form the boundary of the cavity, their accessibility to a hypothetical solvent molecule inside the cavity, and the volume of the cavity are given. Atoms that are accessible to the outside of the protein as well as to the interior of the cavity are marked with a \*. The residue names HEM, VPR and VPL are explained in the legend to Table 5.

of atoms are shown in Figure 2. The three "buried" water molecules of lysozyme and the heme group of myoglobin are included as side-chain atoms. It should be noted that non-polar atoms make up 40 to 50% of the total accessible surface area.

The extent to which different types of atoms are shielded from the bulk solvent by virtue of the fact that they are embedded in the protein matrix was estimated in the following manner. The accessible surface area of individual atoms for each of the 20 amino acid residues was computed for the model  $\beta$ , trans set of Ala-X-Ala systems as described in the previous section. These numbers were multiplied by the number <sup>27</sup>



FIG. 2. Contributions made to the total accessible surface area by different types of atoms. Contributions from the polar atoms are shaded. The numbers should be considered only approximate as they are sensitive to the choice of van der Waal's radii for the various types of groups. The appropriate radii are not yet well established.



FIG. 3. Average accessibilities for different types of atoms. Solid lines for the actual proteins and dotted lines for the hypothetical extended chains of the same composition as the native proteins. Each major bar in the histogram is divided into three parts. The left-hand third refers to ribonuclease-S, the middle to lysozyme, and the right-hand third to myoglobin.

|           |      | •    | ં     | xtended cl | hains as ( | unity      | ı     |        | •     |       |
|-----------|------|------|-------|------------|------------|------------|-------|--------|-------|-------|
|           |      | Main | chain |            |            | Side chair | 1     |        | Total |       |
|           | Cα   | Z    | C     | 0          | C,S        | N,0        | Total | Apolar | Polar | Total |
| RNase-S   | 0-71 | 0.23 | 0-21  | 0.21       | 0.35       | 0-44       | 0.39  | 0.36   | 0-34  | 0.35  |
| Lvsozvme  | 0.60 | 0.14 | 0.26  | 0.22       | 0.26       | 0.49       | 0.35  | 0.28   | 0.36  | 0.32  |
| Mvoglobin | 0.55 | 0.14 | 0.21  | 0.17       | 0-27       | 0-47       | 0.34  | 0.29   | 0.32  | 0.30  |
| Average   | 0.62 | 0-17 | 0-23  | 0.20       | 0-29       | 0-47       | 0.36  | 0-31   | 0.34  | 0.32  |

TABLE 7

Relative accessibility of various classes of atoms in native proteins based on the fully

of residues occurring in a given protein and summed over all the atoms of a given type. The resulting numbers represented the maximum accessible area in a fully extended polypeptide chain. The ratios of the equivalent sums for the native protein to these numbers give a set of factors by which the accessibility of the various classes of atoms are reduced in going from a fully extended chain to the native folded configuration. Table 7 give the results of this calculation. The contributions made by the three "buried" water molecules of lysozyme and the heme group of myoglobin were excluded in computing the sum of the accessible surface areas for the protein.

The computed accessibilities averaged over different groups of atoms are shown in Figure 3. The three "buried" water molecules of lysozyme and the heme group of myoglobin are included as side chain atoms. The average and the range of accessibilities of side chain atoms of different amino acid species are shown in Figure 4. In both of the Figures, corresponding numbers are plotted for model  $\beta$ , trans set of Ala-X-Ala as estimates of maximum accessibility.

## 4. Discussion

The numerical values of accessibilities of individual atoms must be used with caution, as stated earlier. We suggest these values be used in conjunction with the stack of transparent space-filling drawings so that the possible effects of local flexibility of the molecule can be considered.

In the cavity information given in Table 6, the calculation for ribonuclease-S is based upon the amino-acid sequence and the three-dimensional structure of the bovine enzyme. The sequence of the ribonuclease from rat is known (Beintema & Gruber, 1967) and cogent reasons have been put forward (Wyckoff, 1968) for the plausibility of identical structures for the two molecules. The residues Val 57 and Val 108 in the bovine enzyme are changed to isoleucines in the rat enzyme. Examination of a physical model indicates that, if value 57 is replaced by an isoleucine, observing correct geometry around the asymmetric carbon atom  $C\beta$ , the newly added methyl group Cô will be placed nicely in cavity A. Hardly any alteration of the rest of the structure is required for the insertion. Cavity C will disappear in exactly the same manner upon replacing value 108 by a leucine. It has been shown (Marchiori, Rocchi, Moroder & Scoffone, 1966) that phenylalanine 8 could be replaced by a tyrosine in ribonuclease-S while retaining 80% of the enzymic activity. The added OH group will partly fill the cavity B. The phenyl group of Phe 120 can be rotated around the  $C\alpha$ —C $\beta$  bond in such a way that the volume of cavity B is adjustable without required movement of any other side chains.

Many large cavities are found in myoglobin. A number of them are around the heme group. Cavity A is the site where a xenon atom can be inserted (Schoenborn,

398

FIG. 4. Average side-chain accessibilities for different amino-acid residues. The amino acids are arranged in 4 groups—non-polar residues, tryptophan and basic residues, amides and acidic residues, and the hydroxyl residues. In each group residues are placed in ascending order of the accessibility of the corresponding model tripeptides, which are shown as thick horizontal bars. The actual accessibilities averaged over all side-chain atoms and over all the amino-acid residues of that class are given as vertical columns. For polar residues, separate averages over polar and non-polar side chain atoms are plotted as broken lines, the generally upper curve being for polar atoms. Vertical lines are drawn to indicate the minimum and maximum accessibilities for a given class—left line for non-polar, right line for polar, and the middle line for all side-chain atoms. The number of amino-acids residues in each class are also shown across the bottom of the Figure.



. 1

Watson & Kendrew, 1965). The heme bound water molecule forms part of the boundary of cavity D. The actual numbers are also uncertain to the extent that the appropriate van der Waal's radii of the various groups are not well known.

It is seen in Figure 2 that a large fraction of the accessible surface area is non-polar. Table 7 shows that when an amino-acid residue in an extended polypeptide chain is incorporated into a small protein molecule its accessible surface area is reduced by a factor of nearly 3. The amount of reduction in the accessible surface area is almost the same for the polar and the non-polar atoms. If one looks at the side-chain atoms alone, there is a definite tendency for non-polar atoms to be more "buried" than the polar atoms. This generalization does not apply to the main chain largely because of the special character of the carbonyl oxygen atom. This particular atom is highly exposed in an extended chain and shows a very marked reduction in average accessibility in the native protein. The main-chain amide nitrogen and carbonyl carbon atoms also show marked reduction but their accessibilities are so small even in the extended conformation that they do not affect the total average significantly.

As seen in Figure 3, an average side-chain polar atom is nearly 3.5 times as accessible as an average non-polar side chain atom in the native protein. This factor is about 2 in the extended chain conformation. Thus the *changes in accessibility* in going from the extended chain to the folded conformation for polar and non-polar atoms differ by less than a factor of 2 as seen in Table 7. The solvent contribution to the driving force leading from a random chain to the native protein must be related to these changes in accessibility. There may be a much closer balance of the opposing polar and non-polar contributions to this term than might hitherto have been supposed. Such an effect might in turn bear on the peculiar resistance of recent data to fit the concept of "hydrophobic bonding" (Brandts, Oliveira & Westort, 1970).

In Figure 4 it can be seen that proline is an outstanding exception to the tendency of non-polar residues to be "buried". The accessibility of alanine is highly variable.

For both lysozyme and myoglobin,  $C\beta$  of the serine residues is, on the average, more accessible than the OH. One must note also that the range of accessibility of individual amino-acid residues of a given type is rather large for all classes as indicated by the long vertical lines in Figure 4. Because of these wide variations simple concepts, such as that of "buried" and "exposed" residues, cannot be used safely as guides in attempts at structure prediction. Simple generalizations of any sort are remarkably difficult to see in the summaries so far produced.

We wish to express our sincere appreciation to all members of the laboratory for many discussions on the subject of this paper and especially to H. W. Wyckoff.

This work was supported by research grants from the National Institute of General Medical Sciences. One of us (B. L.) held a postdoctoral fellowship from the Arthritis and Metabolic Institute of the National Institutes of Health.

#### REFERENCES

Beintema, J. J. & Gruber, M. (1967). Biochim. biophys. Acta, 147, 612.

Bondi, A. (1964). J. Phys. Chem. 68, 441.

Brandts, J. F., Oliveira, R. J. & Westort, C. (1970). Biochemistry, 9, 1038.

Donohue, J. & Caron, A. (1964). Acta Cryst. 17, 1178.

Leung, Y. C. & Marsh, R. E. (1958). Acta Cryst. 11, 17.

Marchiori, F., Rocchi, R. Moroder, L. & Scoffone, E., (1966). Gazz Chim. Ital. 96, 1549.

Pasternak, R. A. (1956). Acta Cryst. 9, 341.

Pauling, L., (1960). In *The Nature of the Chemical Bond*, 3rd ed. p. 518. Ithaca, New York: Cornell University Press. Ramachandran, G. N. & Sasisekharan, V. (1968). Advanc. Protein Chem. 23, 283.

- Schoenborn, D. P., Watson, H. C. & Kendrew, J. C. (1965). Nature, 207, 28.
- Scott, R. A. & Scheraga, H. A. (1966). J. Chem. Phys. 45, 2091.
- Watson, H. C. (1969). Progress in Stereochemistry, 4, 299.
- Wyckoff, H. W. (1968). Brookhaven Symp. Biol. 21, 252.
- Wyckoff, H. W., Tsernoglou, D., Hanson, A. W., Knox, J. R., Lee, B. & Richards, F. M. (1970). J. Mol. Biol. 245, 305.