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From molecular dynamics simulations of a dipalmitoyl-phosphatidyl-cholinesDPPCd lipid bilayer
in the liquid crystalline phase, pressure profiles through the bilayer are calculated by different
methods. These profiles allow us to address two central and unresolved problems in pressure profile
calculations: The first problem is that the pressure profile is not uniquely defined since the
expression for the local pressure involves an arbitrary choice of an integration contour. We have
investigated two different choices leading to the Irving–KirkwoodsIK d and HarasimasHd
expressions for the local pressure tensor. For these choices we find that the pressure profile is almost
independent of the contour used, which indicates that the local pressure is well defined for a DPPC
bilayer in the liquid crystalline phase. This may not be the case for other systems and we therefore
suggest that both the IK and H profiles are calculated in order to test the uniqueness of the profile.
The second problem is how to include electrostatic interactions in pressure profile calculations when
the simulations are conducted without truncating the electrostatic potential, i.e., using the Ewald
summation technique. Based on the H expression for the local pressure, we present a method for
calculating the contribution to the lateral components of the local pressure tensor from electrostatic
interactions evaluated by the Ewald summation technique. Pressure profiles calculated with an
electrostatic potential truncationscutoffd from simulations conducted with Ewald summation are
shown to depend on the cutoff in a subtle manner which is attributed to the existence of long-ranged
charge ordering in the system. However, the pressure profiles calculated with relatively long cutoffs
are qualitatively similar to the Ewald profile for the DPPC bilayer studied here. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1862624g

I. INTRODUCTION

A system consisting of two or more phases will have
interfacial regions that separate the bulk phases. The proper-
ties of interfacial regions can be characterized through mac-
roscopic variables such as the surface tension, surface free
energy, bending modulus, saddle splay modulus, etc. These
properties can be determined from the pressure distribution
through the interfacial region1–3 sthe pressure profiled. There-
fore, pressure profiles provide a microscopic interpretation of
interfacial phenomena allowing, for instance, determination
of the viscosity profile,4,5 which is of great interest in mate-
rials and polymer science.

Pressure profiles are not available experimentally6 but
can be calculated from, e.g., molecular dynamicssMDd
simulations ssee, e.g., Refs. 7–11d. Early MD studies of
simple liquid-gas interfaces7,8 explored methods for calculat-
ing the local pressure and provided insight into the micro-
scopic properties of the surface tension. In biological sys-
tems, such as cell membranes, the pressure profile plays a
central role since the function and survival of living cells is
tightly coupled to the mechanical properties of the
membrane.12 Moreover, it has been suggested that the pres-
sure profile in cell membranes undergoes changes in the
presence of anesthetic compounds and that this change might
be a key step in general anesthesia.13,14 Changes in the pres-

sure profile in lipid bilayers, which is a common model sys-
tem for cell membranes, has also been shown to affect the
function of mechanosensitive channels.11 Computer
simulations9–11,15of lipid bilayers indicate that bilayers have
regions with negative lateral pressure trying to minimize the
interfacial area, and regions with positive lateral pressure
trying to expand the bilayer. The mentioned MD bilayer
studies, as well as less detailed models,1,6,16 predict lateral
pressure variations in these regions of several hundred bars.

In order to determine the pressure profile one needs to
calculate the local pressure. The local pressure is not
uniquely defined since the expression for the local pressure
involves an integral along an arbitrarily chosen contour.17 In
previous studies, two contours have been employed leading
to two different expressions for the local pressure tensor,
namely, the Irving–Kirkwood18 sIK d and the Harasima19 sHd
local pressure tensors. An obvious dilemma in pressure pro-
file calculations is that it is not possible to rule in favor of
either of these expressions. In most bilayer studies the IK
expression has been preferred.9–11,15

The IK expression is applicable for interactions de-
scribed bym-body potentials, wherem is finite,10 which
makes it possible to include local pressure contributions
from, e.g., valence angle and dihedral interactions. There is
no problem in including electrostatic interactions when these
are calculated directly from the Coulomb potentialsm=2d.
For computational reasons, calculating electrostatic interac-
tions directly from the Coulomb potential requires the use of
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a cutoff and due to the long-range nature of electrostatic
interactions, the cutoff should be fairly long. However, even
when the cutoff is long, structural artifacts may be intro-
duced in the system20,21 and therefore the use of an electro-
static potential cutoff is not always an optimal choice.4 One
way to avoid this is to evaluate the electrostatic interactions
by the Ewald summation techniquessee, e.g., Ref. 4d, in
which the electrostatic interactions are split up in a real and
reciprocal space contribution. The real space contribution is
still pairwise additive withm=2, whilem is formally infinite
in the reciprocal space sum. Consequently, it is not possible
to include the contribution from the reciprocal space part of
the Ewald sum in the pressure profile using the IK expres-
sion for the local pressure tensor. One approach9,11 to this
problem has been to calculate the pressure profile by the IK
expression, using a long cutoff for the electrostatic interac-
tions. When the simulations are conducted using a cutoff, the
pressure profile should also be calculated using the same
cutoff for consistency. However, when the simulations are
conducted using Ewald summation while the pressure profile
is calculated with a finite cutoff, the long-range electrostatic
interactions are neglected in the latter calculation. The ne-
glected contribution to the lateral pressure may be relatively
small, but one should keep in mind, that the local lateral
pressure may vary several hundred bars through the bilayer
even though bulk pressure in the simulation is merely 1
bar.9–11,15 Thus, a small contribution to the total simulation
pressure might not be negligible in pressure profile calcula-
tions. A method for including the reciprocal space contribu-
tion was developed by Alejandre, Tildesley, and Chapela8 in
a study of a water-vapor interface. In this method, they used
different expressions for the real space and reciprocal space
electrostatic contributions to the pressure profile and their
method was only set up to handle systems with one kind of
molecules that were assumed to be rigid.

The present work addresses two central problems in
pressure profile calculations. The first problem is the arbi-
trariness in the choice of integration contour. We will inves-
tigate this problem by comparing the pressure profiles ob-
tained with the two different contours that lead to the IK and
H expressions for the local pressure. The second problem is
how to include the electrostatic contribution to the local pres-
sure tensor when Ewald summation is used in a multicom-
ponent system with flexible molecules.

The paper is organized as follows: First, in Sec. II, we
summarize the theory of local pressure calculation and show
how the H expression can be used to calculate the local pres-
sure contribution from the Ewald sum evaluation of electro-
static interactions in systems with different and flexible mo-
lecular species. In Sec. III and the Appendix we describe the
system setup and other simulation details. In Sec. IV A the
differences between pressure profiles calculated according to
the IK and H expressions are investigated for a dipalmitoyl-
phosphatidyl-cholinesDPPCd lipid bilayer. Based on these
investigations, we discuss the uniqueness of the pressure pro-
file for the system in consideration. In Sec. IV B, the pres-
sure profile including all electrostatic interactions as deter-
mined by the Ewald summation technique is compared to
pressure profiles calculated with varying cutoffs for the elec-

trostatic interactions. From this comparison, we discuss the
long-range electrostatic contribution to the pressure profile.
The results in Sec. IV B are followed by a summary and the
conclusion.

II. THEORY

A. Bulk pressure tensor

The bulk pressure tensor for a system is a sum of kinetic
and configurational contributions, i.e.,Ptot=Pkin+Pconfig. In
this paper, only the configurational part of the pressure tensor
is of interest and for simplicity it will be denotedP. Theab
element of the configurational part of the pressure tensor is
obtained from the virial theorem,4

Pab =K 1

V
o

i

f i
ar i

bL =K−
1

2V
o
iÞ j

f i j
ar ij

bL , s1d

whereV is the volume of the system,f i the total force on
particle i and r i its position. The brackets denote time aver-
aging. In the second part of the equation we have usedr i j

=r j −r i and have assumed that the interactions in the system
may be written as a sum over pair interactions, that is,
f i =o j8f i j wheref i j is the force on particlei due to particlej .
The prime in the summation indicates thatj Þ i.

B. Local pressure tensor

By setting up a microscopic momentum balance and re-
lating this to the corresponding continuum expression one
arrives at the following expression for the configurational
part of the local pressure tensor:7,17,22

Pabsr d =Ko
i

f i
aE

C0i

dfr − lgdsbL . s2d

The contour integral runs along an arbitrary pathC0i from a
reference positionR0 to the position of theith particler i. s is
a line element onC0i and l is the position vector of the line
element.dfr − lg is the Dirac delta function. Equations2d ex-
presses that the pressure tensor near the pointr is a sum
of contributions coming from all particleshkj for which
the corresponding contourshC0kj pass through the region
aroundr .

For a pairwise additive potential, Eq.s2d can be ex-
pressed as2,7,17,22

Pabsr d =K−
1

2o
iÞ j

f i j
aE

Ci j

dfr − lgdsbL . s3d

In the derivation of Eq.s3d from Eq. s2d, the contourC0i is
forced throughr j and the integral is split into an integral over
C0j minus an integral overCi j . The integral alongC0j is zero
no matter how the contour is chosen due to the translational
invariance of the forces, while the integral alongCi j in gen-
eral depends on the path chosen.10

In the following we present the local pressure expres-
sions based on two different choices ofCi j . The expressions
for the local pressure will be written for a system of planar
geometry and will be discretized to slabs of finite size which
makes the expressions suitable for implementation in a MD
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program. Note that the bulk pressure tensor in Eq.s1d is a
simple average of the local pressures in all slabs. This is used
as a consistency check of the calculations.

1. Irving–Kirkwood contour

The IK expression for the local pressure tensor18 is ob-
tained by choosing the contourCi j as a straight line connect-
ing the particle pairij .2,7,17,22This contoursIK contourd is
illustrated in Fig. 1sopen arrowsd. In planar geometrysrota-
tional symmetry around thez axisd the configurational con-
tribution to the lateral pressure,PL;sPxx+Pyyd /2, in slabs,
extending fromzsl to zsu with volumeVs, is given by

PLssd =K−
1

2Vs
o
iÞ j

f i j
x r ij

x + f ij
y r ij

y

2
Fsszsu,zsl,r i

z,r j
zdL , s4d

whereFs is the fraction of the connecting line betweeni and
j that is located within slabs, i.e., betweenzsl andzsu. In Fig.
1, Fs is given by the ratio between the length of the bold part
of the IK contour and the length of the full IK contour which
can be expressed as

Fs = uzsu− zslu/ur j
z − r i

zu. s5d

The expression in Eq.s4d can be generalized tom-body in-
teractions withm finite10 and it is therefore straightforward
to include local pressure contributions from valence angles
sm=3d and dihedral interactionssm=4d. Electrostatic inter-
actions can also be incorporated using Eq.s4d if all electro-
static interactions are evaluated directly from the Coulomb
potential. However, using the Ewald summation technique4

introduces a problem in the pressure profile calculation since
the reciprocal space part of the sum can not be expressed as
m-body interactions withm finite and it is therefore not pos-
sible to determineFs in Eq. s5d.

2. Harasima contour

The contour leading to the Harasima expression for the
local pressure tensor19 goes from particlei at r i =r i

xêx+r i
yêy

+r i
zêz to particle j at r j =r j

xêx+r j
yêy+r j

zêz via straight lines
through the intermediate pointr 8=r j

xêx+r j
yêy+r i

zêz sH con-
tour, lines marked with filled arrows in Fig. 1d. The resulting
expression for the lateral pressure in slabs is7,17,19,22

PLssd =K−
1

2Vs
o
iÞ j

f i j
x r ij

x + f ij
y r ij

y

2

3Qszsu− r i
zdQsr i

z − zsldL , s6d

whereQsxd is the Heaviside step function. Equations6d ex-
presses that half of the lateral pressure arising from the in-
teraction betweeni and j is assigned to the slab wherei is
locatedscf. bold part of the H contour in Fig. 1d. The other
half of the lateral pressure from this pair is assigned to the
slab wherej is located.

3. Properties of the IK and H expressions

At this point we have two expressions for the local pres-
sure and whenm is finite both Eqs.s4d ands6d can be applied
with almost equal simplicity. However, there are two impor-
tant differences between the expressions that will be dis-
cussed in the following:

s1d The IK expression distributes the virial evenly on the
connecting line between two interacting particles and there-
fore the contribution to the local pressure from this pair is the
same in all slabs in the region between the two particles.
Further, the local pressure is independent of the number of
slabs when the slab width is smaller than the distance be-
tween the two particlessrange of interactiond except for the
slabs with the particles. There, the connecting line between
the particles does not cross the entire slab. If the lateral con-
tribution to the virial from this interaction isW12, then the
lateral pressures in all seven slabs are the same and equal to
s 1

7W12d / sAhd, whereA is the xy area of the simulation box
and h is the slab width. If we were using only one slab of
height 7h sas indicated to the left in Fig. 2d the lateral pres-
sure in this slab would also besW12d / s7Ahd. To the right in
Fig. 2 the corresponding pressure distributions are shown
and the IK-1 and the IK-7 profilessIK profile using 1 and 7

FIG. 1. Illustration of the contours leading to the IK and H expressions for
the local pressure tensorsopen and filled arrows, respectivelyd. The bold part
of the IK contour indicates the fraction of the full virial from the interaction
betweeni and j that is assigned to slabs according to Eq.s4d. The bold part
of the H contour indicates that the virial of the interaction fromi to j is
assigned to slabq according to Eq.s6d.

FIG. 2. Schematic illustration of the local pressure distribution coming from
the IK and H expressionsssolid and dotted lines, respectivelyd when varying
the slab width. See text for details.

124903-3 Pressure profile calculations for lipid bilayers J. Chem. Phys. 122, 124903 ~2005!

Downloaded 23 Feb 2010 to 130.102.158.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



slabs, respectivelyd coincide. This property can also be seen
from Eq. s4d where the slab volumeVs and the fraction of
connecting line in the slabFs both scale linearly in the slab
width. Thus, the pressure in a slab is independent of the slab
width. These simple considerations also indicate that, for one
pair, the IK expression will not predict local pressure varia-
tions on length scales that are shorter than the relevant
“range of interaction.” Therefore, it is reasonable to use a
slab width which is comparable to the shortest range of in-
teraction in the system.

The local pressure distribution from the H expression is
also shown in Fig. 2. With one slab, the lateral pressure
distribution, is identical to the IK profiles as illustrated by the
H-1 profile. This illustrates that the local pressure is indepen-
dent of the choice of contour and therefore well defined on
the length scale of the range of interaction. This is true for
any contour that is confined to the region between the par-
ticles. When the slab width is decreased toh, i.e., we are
using seven slabs, the H expression gives the pressure
s 1

2W12d / sAhd in the two slabs where the particles are located
and zero elsewheresH-7 profile in Fig. 2d. Increasing the
number of slabssthereby reducing the slab widthd will cause
the H pressure, in the two slabs with the particles, to increase
which is illustrated by the H-14 profile in Fig. 2s14 slabs
between the particlesd. The pressure peaks in the H-profile
can be smeared out by the motions of the two particles and
for a homogeneous particle density, the IK and H profiles are
identical.17 The invariance of the local pressure to the slab
width favors the use of the IK expression over the H expres-
sion, but does not imply that IK profiles are more correct.

s2d As described in Sec. II B 1, the IK expression cannot
be used to calculate the local pressure contribution from the
reciprocal space part of the Ewald sum. This is, however,
possible with the H expression: If the virial from the inter-
action from particlei to particle j is known, one need not
know r j

z in order to use the H expression in Eq.s6d. Although
the reciprocal space sums are not expressed in terms of pair
interactions, it is possible to derive an expression for the
pressure contribution coming from interactions between par-
ticle i and all particles represented in the reciprocal space
part of the Ewald sumssee the following sectiond. This con-
tribution can be considered as sum of many pairwise additive
contributionssbetweeni and differentj ’sd, which should all
be assigned to the slab wherei is located, and therefore the
sum of these pair contributions can be assigned to the slab
where i is located. This approach will be referred to as the
Harasima–EwaldsHEd method.

Since the vertical part of the H contourscf. Fig. 1d
passes through all slabs between the interacting particles,
like the IK contour, thezz element of the H pressure tensor
depends on two particle positions in a similar way as the IK
expression in Eq.s4d does. The expression for thezzelement
of the H local pressure tensor is obtained by substituting the
superscriptsx andy with z on f andr in Eq. s4d.7,17,22There-
fore, it is not possible to calculate this component of the
local pressure tensor from electrostatic interactions evaluated
by Ewald summation using the HE method. This, however,
does not present a problem since thezzelement of the local
pressure tensorsincluding all interactionsd is equal to the

bulk pressure everywhere in the simulation box for a system
in mechanical equilibriums= ·P=0d. The fact that the H ex-
pression allows the reciprocal space part of the Ewald sum to
be included in the lateral pressure profile favors the H ex-
pression over the IK expression.

C. Ewald summation and local pressure

In the preceding section we argued that the H expression
in Eq. s6d can be used for distributing the lateral pressure
contribution from the reciprocal space part of the Ewald
sum, if the pressure contribution from the interaction be-
tween particlei and all particles represented in the reciprocal
space sumsPK,i is known. Such an expression is derived in
the following.

Using periodic boundary conditions, the Coulomb en-
ergyUC of N particles with partial chargeshqj and positions
hr j can be expressed by the Ewald sum:4

UC =
1

2Ve0
o

knÞ0
QskndSskndSs− knd

+
1

4pe0
o

i, jPI

qiqjerfcskr ijd/r ij

−
1

4pe0
o

i, j¹I

qiqjerfskr ijd/r ij −
k

4p3/2e0
o

i

qi
2. s7d

Here e0 is the vacuum permittivity,r ij is the distance be-
tween particlei and j , and k is a parameter that shifts the
energy contribution from the real to the reciprocal space ask
increases.I is the list of particle pairs for which the energy is
evaluated. erf is the error function and erfc is the comple-
mentary error function.V is the volume of the simulation box
which, for an orthogonal box, is given byV=LxLyLz where
La is the box length in thea direction sa=x,y,zd. kn is the
reciprocal lattice vector given by

kn = 2psnx/Lx,ny/Ly,nz/Lzd1êx

êy

êz
2 , s8d

with na=0, ±1, ±2, ±3,… . Ssknd is given by

Ssknd = o
j=1

N

qjexpsikn · r jd, s9d

with i2=−1. Qsknd is given by

Qsknd = exps− kn
2/4k2d/kn

2. s10d

Note that Eq.s7d assumes thatk has been chosen so that the
real space part of the energy has converged within the central
simulation box. In practicek is chosen such that the real
space energy converges within a specified distance that is
smaller than half the length of the simulation box. The first
term in Eq.s7d is the reciprocal space contributionUK to the
total Coulomb energyUc. From UK one can extract the en-
ergyUK,i of particlei due to all other particles represented in
the reciprocal space sum. This energy satisfiesUK= 1

2oiUK,i

and is given by23
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UK,i =
qi

Ve0
o

knÞ0
QskndRefexps− ikn · r idSskndg. s11d

Here Re denotes the real part of the argument. For a rectan-
gular simulation box, the diagonal elements of the instanta-
neous configurational contribution to the pressure tensor are
given by24,25 PaaV=−s]U /]LadLa. Using the energy expres-
sion in Eq. s11d gives the following expression for the
instantaneous reciprocal space pressure contribution from
particle i:

PK,i
abV =

qi

Ve0
o

knÞ0
QskndRefexps− ikn · r idSskndg

3Fdab − 2kn
akn

bS 1

kn
2 +

1

4k2DG , s12d

half of which should be assigned to the slab where particlei
is located according to Eq.s6d. dab in Eq. s12d is the Kro-
necker delta.

III. SIMULATION DETAILS

The lipid bilayer in the present study consists of 72
DPPC lipids solvated with 2000 water molecules resulting in
a total of'16 000 atoms. The water molecules were placed
around the bilayer using the programSOLVATE sby Grub-
müllerd and subsequently the water layer surrounding the
bilayer was cropped to a rectangular, periodic simulation box
with averagexyzdimensions of<49345368 Å3. The wa-
ter molecules were represented by the TIP3 water model.26

The system was equilibrated for 15 ns with the area fixed to
the experimental values62.9 Å2 as suggested by Nagleet
al.27d. Data for the pressure profile calculations were col-
lected from the next 17 ns of propagation in theN-P-T en-
semble. All simulations were carried out using the MD soft-
wareNAMD sRef. 28d with a time step of 1.0 fs. Both bonded
and nonbonded interactions were updated every time step.
The simulations were conducted at 300 K and an average
isotropic pressure of 1 bar. The pressure was controlled by
the Nosé-Hoover–Langevin barostat29 with a piston oscilla-
tion time of 100 fs and a damping time of 50 fs. The three
box lengths of the simulation box were allowed to adjust
independently to the relevant pressure components. Electro-
static interactions were evaluated using the particle mesh
Ewald sPMEd method30,31 with a grid spacing of less
than 1 Å.

As recently demonstrated,32 the CHARMM27 parameter
set33 does not reproduce the experimental value for the area
per lipid or the experimental order parameter profile when
the bilayer is allowed to adjust its area freely, as in theN-P-T
ensemble. In theN-P-T ensemble the area per lipid is se-
verely underestimated and is steadily decreasing in time.32

Therefore, many membrane simulations using the
CHARMM27 parameters are carried out in theN-P-A-T sA
is the area of the bilayer in thexy planed or N-Pz-g-T sg is
the surface tensiond ensembles.11,15,32,34The area per lipid
can be adjusted to the experimental value in these ensembles,
however, stretching the bilayer can introduce artifacts that
are not easily recognized as such.35,36 In the present study,

we have chosen to conduct all simulations in theN-P-T en-
semble, using a new parameter set developed by the authors
and coworkersssee Appendixd.

Pressure profile calculations were carried out by
postsimulation analysis of the trajectory using a program de-
veloped by the authors. The program uses routines from the
programsMINDY

28 andCATDCD sdeveloped by the Theoreti-
cal and Computational Biophysics Group, University of Illi-
nois, Urbana-Champaignd. The profiles were calculated with
70 slabs corresponding to an approximate slab width of 1 Å.
The width was adjusted during the calculation according to
the fluctuations in the size of the simulation box. In the
following the z axis is defined as normal to the bilayer and
z=0 is defined as thez component of the bilayer center
of mass. The statistical analysis was carried out between
data blocks averaged over 250 ps which were found to be
uncorrelated.

IV. RESULTS AND DISCUSSION

A. Comparing IK and H pressure profiles

In this section we compare the pressure profiles obtained
by the IK and H expressions. We have shown the total pres-
sure profiles in Fig. 3 as calculated by the IK and H expres-
sions with a electrostatic potential cutoff at 20 Å. In the
pressure profile calculations the cutoff is limited to 20 Å, a
restriction imposed by the box dimensions. Although it is
possible to include the reciprocal space contribution in the H
profile, we have chosen to use a finite cutoff to make a direct
comparison with the IK profile possible. We note that both
pressure profiles qualitatively resemble the profiles previ-
ously published from coarse grained,10 united-atom,9 and
all-atom11 models for lipid bilayers. The small asymmetry in
the pressure profiles is probably caused by long wave length
membrane undulations with correlation times of more than 5
ns.36,37 For completeness we also include Fig. 4 that shows
all five contributions to the H pressure profile in Fig. 3. From

FIG. 3. Total pressure profiles from the IK and H expressionssfour-point
running averaged. Both are calculated with a cutoff of 20 Å for the electro-
static interactions. Thez coordinate is defined normal to the bilayer with
origin in the bilayer center of mass. To indicate the dimension of the bilayer,
the z values corresponding to the maximal phosphorus density are marked
with the letter P on the top axis of the graph. The solid gray lines show the
upper and lower standard deviationsfSEsIK dg of the average IK profile.
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Fig. 3 we see that the IK and H profiles deviate by less than
±50 bars in most regions and very importantly that the pro-
files have the same qualitative features. Pressure profiles cal-
culated with electrostatic cutoffs at 8, 12, and 16 Åsnot
shownd give the same qualitative resemblance between the
two ways of defining the local pressure. The similarity of the
profiles in Fig. 3 suggests that the qualitative features of the
pressure profiles for this system are rather insensitive to the
choice of contour and therefore the pressure profile appears
to be well defined, at least, within a margin of ±50 bars. The
similarity between the IK and H profiles can probably be
ascribed to the almost homogeneous particle density
throughout the bilayer, with variations of only 10% from the
average particle density. Since we only have demonstrated
the invariance of the pressure profile to the choice of contour
with the IK and H expressions for a DPPC lipid bilayer, we
cannot claim the invariance to be universal. For example, in
systems with density oscillations, such as liquids near a solid
surface,38 qualitative discrepancies between the IK and H
pressure profiles have been reported.39

With that uncertainty in mind, we recommend that the
pressure profile in a given system be calculated using both
the IK and H expressions to check the uniqueness of the
profile. Computing both profiles will not add significantly to
the computation time.

Note that if we are only interested in calculating the

surface tensiong for an interfacefg=e−Lz/2
Lz/2 sPN−PLddzg, the

IK and H expressions will always give the same result.7,17

Therefore, irrespective of the nature of the system, the sur-
face tension can be rigorously estimated from the pressure
profile.

B. Cutoff versus Ewald summation

In the preceding section we concluded that the pressure
profiles obtained from the IK and H expressions are qualita-

tively similar using cutoffs ranging from 8 to 20 Å. When the
Ewald summation technique is used, the energy can no
longer be expressed in terms ofm-body interactions withm
finite as discussed in Sec. II B 3, and the electrostatic contri-
butions to the lateral pressure can therefore only be obtained
by the H expressionsusing the HE method cf. Sec. II B 3d.
As long as the IK and H expressions lead to the same pres-
sure profile, the HE method allows us to make a unique
determination of the pressure profile when the Ewald sum-
mation technique has been used in the simulations. In the
following, pressure profiles calculated by the HE method
will be referred to as Ewald profiles.

As for the electrostatic energy calculated by the Ewald
summation technique, the pressure profile should be inde-
pendent ofk, i.e., independent of how the calculation of the
profile is partitioned between the real and reciprocal spaces.
Thus, we compared two Ewald profiles calculated withk
=0.14 Å−1 and k=0.40 Å−1 sdata not shownd. At k
=0.14 Å−1, the reciprocal space contribution to the total elec-
trostatic pressure is very small, whereas it accounts for 9% at
k=0.40 Å−1. Still, the k=0.14 Å−1 andk=0.40 Å−1 profiles
are identical in all regions, which indicates that the HE
method correctly deals with electrostatic pressure contribu-
tions evaluated by Ewald summation.

Then let us compare the pressure profiles obtained with
the HE method and with different cutoffs of the electrostatic
potential. The profiles are based on the 17 ns simulation
where the PME technique was used. Figure 5 shows the total
pressure profilessPL−PNd calculated using cutoffs of 8, 12,
16, and 20 Å as well as the Ewald profile. Note that the
pressure in the aqueous phasesuzu.26 Åd is not isotropic in
any of the profiles, which indicates that the simulation does
not contain enough water for the aqueous phase to obtain
bulk properties away from the bilayer. In Fig. 5 we see that
the profile obtained with a cutoff of 8 Å deviates from the
Ewald profile by up to −400 bars in the aliphatic part of the
bilayer suzu,14 Åd, and in the aqueous phasesuzu.26 Åd
the deviations amount to about 100 bars. One expects that by

FIG. 4. Five pressure profile contributions calculated by the H expression
for the bonded, valence angle, dihedral, van der Waals, and electrostatic
interactions in a DPPC lipid bilayersfour-point running averaged. The sum
of these contributions gives the total H pressure profile in Fig. 3. Thez
coordinate is defined normal to the bilayer with origin in the bilayer center
of mass. To indicate the dimension of the bilayer, thez values corresponding
to the maximal phosphorus density are marked with the letter P on the top
axis of the graph.

FIG. 5. Total pressure profilessfour-point running averaged calculated using
cutoffs of 8, 12, 16, and 20 Å as well using HE methodsEwaldd. The
maxima in the phosphorus density are marked with the letter P on the top
axis of the graph. The standard error for all the pressure profiles is of the
same magnitude as the standard error for the IK profile in Fig. 3.
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increasing the cutoff, thereby including electrostatic interac-
tions at larger distances, the cutoff profiles will approach the
Ewald profile. This is indeed the case in all regions when the
cutoff is increased from 8 to 12 Å, but surprisingly, Fig. 5
also shows that increasing the cutoff further to 16 and 20 Å
causes an increase in the deviations from the Ewald profile in
some regions, while other regions show only small devia-
tions. Thus, the electrostatic pressure profile does not simply
converge, in a monotonic fashion as the cutoff is increased.
The pressure profiles in Fig. 5 result in surface tensionsg of
20±6 mN/m scutoff 8 Åd, 28±4 mN/m scutoff 12 Åd,
−8±4 mN/m scutoff 16 Åd, −22±4 mN/m scutoff 20 Åd,
and −6±2 mN/msEwaldd. The surface tension is calculated

usingg=e−Lz/2
Lz/2 sPN−PLddz and the standard error for the av-

erage surface tension is estimated from the surface tensions
in the uncorrelated 250 ps time blocks. These values also
reflect the nonmonotonic convergence behavior in the sys-
tem. A similar cutoff dependence is found for the energy of
an ionic crystal, where it is well known that the electrostatic
energy oscillates strongly as the cutoff is increased due to
radial charge ordering. The analogy to ordered ionic struc-
tures is substantiated by the existence of a nonuniform lateral
charge profileqLsrd in the bilayer scf. Fig. 6d. The lateral
charge profile atr =r8, calculated for any reference atom,
gives the total charge in a cylindrical slab of heighth, ex-
tending laterally fromr8 to r8+dr away from the reference
atom. Thus, oscillations inqLsrd indicate lateralsor “in-
slab”d charge ordering in the system, which suggests that the
energy and pressure from in-slab interactions will oscillate
with increasing cutoff. In Fig. 6 the solid line shows the
average lateral charge profile calculated for aliphatic carbon
atoms withuzu,14 Å. In the calculation ofqLsrd the region
uzu,14 Å was divided into 14 slabs of width 2 Å and for all
carbons in each slab,qLsrd was calculated with contributions
from all other atoms in the slab. In each slab theqLsrd’s
around all carbon atoms were averaged to give oneqLsrd for
that slab and theseqLsrd’s were then averaged over the 14
slabs to give the solid line in Fig. 6. The figure shows that

the bilayer possesses lateral charge ordering which persists
over the whole range considered. This explains why the cut-
off profiles converge toward the Ewald profile in an oscilla-
tory manner as seen in Fig. 5. Although in-slab electrostatic
interactions give an important lateral pressure contribution
since the lateral components of bothf i j andr i j are relatively
large and the whole pressure is assigned to one slab, the
“out-of-slab” electrostatic interactions may also have signifi-
cant lateral components that are governed byqLsrd in other
slabs. The dotted line in Fig. 6 showsqLsrd for phosphorus
calculated in the region 24 Å, uzu,16 Å using a slab width
of 2 Å. ComparingqLsrd for aliphatic carbon atoms with
qLsrd for phosphorus atomssFig. 6 solid and dotted lines,
respectivelyd we see thatqLsrd varies through the bilayer,
which is reflected in the quite complex cutoff dependence of
the pressure profile. Adding to the complexity of the cutoff
dependence of the pressure profile, one should keep in mind
that the out-of-slab contributions also contribute toPN. These
may add or cancel contributions inPL and therfore, the cut-
off dependence ofPL−PN may be different from the one
of PL.

Note that qLsrd for phosphorus converges towards a
negative charge, which means that the charge density in the
phosphorus-rich region of the bilayer is negative. This indi-
cates a nonuniform charge density in the direction normal to
the bilayer giving rise to the electrostatic potential profile
ssee, e.g., Refs. 40 and 41d.

We have found that increasing the electrostatic cutoff
will not necessarily make the cutoff-profile approach the
Ewald profile. This behavior can be explained in terms of
charge ordering in the system which, as for ordered ionic
systems, means that the results are sensitive to the cutoff
distance. By using, e.g., charge-group based cutoff one can
accommodate for some of the shortcomings of the brute
force cutoff method. The charge-group based cutoff method
would be straightforward to implement in pressure profile
calculations both for the IK and H expressions, and would, in
effect, damp the oscillations in the lateral charge profile.
Therefore, pressure profiles calculated using the charge-
group based cutoff are expected to be less cutoff dependent
compared to the brute force cutoff profiles. A thorough in-
vestigation of different methods for treating electrostatic in
MD simulations was carried out by Anézoet al.42

We would like to emphasize that although the cutoff pro-
files in Fig. 5 deviate from the Ewald profile, all the qualita-
tive features of the Ewald profile are conserved in the cutoff
profiles when using a reasonably long electrostatic potential
cutoff shere 16 and 20 Åd. However, since the simulation is
conducted with Ewald summation, the cutoff profiles are ap-
proximations to the Ewald profile. Thus, even though we
have found that pressure profiles in the DPPC lipid bilayer,
calculated with a long cutoff from Ewald simulations, are
qualitatively correct, other systems may have a different
charge structure and therefore may have a different cutoff
dependence which is not knowna priori.

FIG. 6. The solid line is the lateral radial charge profile measured from
aliphatic carbon atomssuzu,14 Åd. The dotted line is the lateral radial
charge profile measured from phosphorus atoms in the region 24 Å, uzu
,16 Å. See text for details. As in the simulations, the electrostatic interac-
tions between atoms that interact through covalent bonds or valence angle
interactions were excluded in the calculation of the lateral charge profile.
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V. CONCLUSION

In this paper we have addressed two central issues con-
cerning pressure profile calculations, namely, the arbitrari-
ness in the choice of integration contour and the treatment of
long-range electrostatic interactions.

Regarding the choice of integration contour we find that
the Irving–Kirkwood sIK d and HarasimasHd expressions
give qualitatively very similar pressure profiles for a DPPC
lipid bilayer. The deviations between the IK and H profiles
are below ±50 bars in most regions. However, in systems
with strong density oscillations, such as liquids close to a
wall, it has been reported that the IK and H pressure profiles
have regions where they deviate qualitatively.39 Therefore, in
such regions, the local pressure is not uniquely defined and a
detailed interpretation of the local pressure must be encum-
bered with great uncertainty. Thus, with a given system, a
comparison of the pressure profiles obtained by the IK and H
expressions is advisable in order to check the uniqueness of
the pressure profile.

Concerning the treatment of long-range electrostatic in-
teractions, we have shown how the H expression for the local
pressure can be used to include the electrostatic contributions
to the lateral components of the local pressure tensor calcu-
lated from the Ewald sum through the so-called Harasima–
Ewald methodsHE methodd. We used the HE method to
calculate pressure profiles for a DPPC lipid bilayer and the
pressure profile is found to be independent of the partitioning
between the real space and the reciprocal space contributions
to the Ewald sum.

The pressure profile can also be calculated using a finite
cutoff for the electrostatic interactions. This approach is con-
sistent if the simulations are also conducted with the same
cutoff, but if the simulations are conducted using Ewald
summation, such a pressure profile is inconsistent. The effect
of this inconsistency was investigated by comparing pressure
profiles calculated with different electrostatic potential cut-
offs s8, 12, 16 and 20 Åd with the Ewald profile. We found
that the cutoff profiles approach the Ewald profile in a non-
monotonic fashion which was attributed to the existence of
long-range charge ordering in the bilayer. Even though the
variations in the pressure profile with cutoff are found to be
rather subtle, the qualitative features of the cutoff profiles are
similar to the Ewald profile when a relatively large cutoff is
useds16 and 20 Åd. Further, considering the uncertainty in
the pressure profile caused by the arbitrariness in the choice
of integration contour, the deviations between the cutoff pro-
files and the Ewald profile are not serious as long as a rela-
tively long cutoff is used. However, other systems may have
a different charge structure compared to a DPPC bilayer and
therefore the cutoff dependence of the pressure profile may
be different.

For systems that are simulated using Ewald summation,
the HE method can be used for pressure profile calculation
without investigating the cutoff dependence of the pressure
profile, regardless of the charge structure in the system.
Thus, calculating the pressure profile by the HE method has
great advantages compared to calculations using an electro-
static potential cutoff.
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FIG. 7. Partial charges for the DPPC lipids in the simulation. The atoms in
the lipid “backbone” are drawn in gray. The atoms in the three methyl
groups on nitrogen have identical charges but for clarity only one methyl
group is shown explicitly. The solid zigzag line in the sn2 chain indicates
that these atoms have been assigned new charges that are equal to the cor-
responding charges in the sn1 chain. For clarity, the atoms are only shown
explicitly in the sn1 chain. The dashed lines in the sn1 and sn2 chains
symbolize the rest of the acyl chain where the CHARMM27 charges were
used. An over-bar indicates that the charge is negative.

FIG. 8. The area per lipid as a function of time. Note that there is no drift in
the area per lipid and that the average area is 60.4 Å2. The data were ob-
tained using a new lipid parameter set developed by the authors and
co-workers.
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APPENDIX: LIPID PARAMETERS

A new set of partial charges for the lipid head group was
determined byab initio calculations on 72 lipid configura-
tions. The 72 lipid configurations were taken from an MD
simulation with the area fixed to the experimental value. The
average charges from these calculations was used in the
present work and are presented in Fig. 7. The new parameter
set gives an average area per lipid of 60.4 Å2 scf. Fig. 8d
which is relatively close to the experimental value of 62.9 Å2

considering the variations in the area per lipid as determined
from different experiments.43 The area per lipid is also in
excellent agreement with the results of other simulationssus-
ing other forcefieldsd: Berger, Edholm, and Jahnig40 find
61.1 Å2 and Tieleman and Berendsen41 find 60.0 Å2. Figure
8 indicates that the new DPPC bilayer serves as a good
model system for testing the importance of long-range elec-
trostatics in pressure profile calculations for lipid bilayers.

Further details on the methods used in the determination
of the partial charges in Fig. 7 as well as an investigation of
the bilayer properties will be published in the near future.
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